Self-Powered Multifunctional Organic Hydrogel Based on Poly(acrylic acid-N-isopropylacrylamide) for Flexible Sensing Devices

Human-machine interactions, medical monitoring, and flexible robots stimulate interest in hydrogel sensing devices. However, developing hydrogel sensors with multifunctions such as good mechanics, electroconductivity, resistance to solvent volatility as well as freezing, self-adhesion, and independe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 17 vom: 02. Mai, Seite 6151-6159
1. Verfasser: Han, Libin (VerfasserIn)
Weitere Verfasser: Song, Xiaofeng, Chen, Dongsheng, Qu, Rui, Zhao, Yuze
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Human-machine interactions, medical monitoring, and flexible robots stimulate interest in hydrogel sensing devices. However, developing hydrogel sensors with multifunctions such as good mechanics, electroconductivity, resistance to solvent volatility as well as freezing, self-adhesion, and independence on external power supply remains a challenge. In the work, a poly(acrylic acid-N-isopropylacrylamide) P(AA-NIPAm) organic hydrogel loading LiCl is prepared by ultraviolet cross-linking in ethylene glycol/H2O. The organic hydrogel exhibits favorable mechanical properties such as an elongation of break at 700% and a breaking strength of 20 KPa, can adhere to various substrates, and resists frost and solvent volatility. Especially, it possesses an excellent conductivity of 8.51 S/m. The organic hydrogel shows wide strain sensitivity based on resistance change, and the gauge factor reaches 5.84 in the range of 300-700%. It has short responsive and recuperative time and is still stable within 1000 rounds. Moreover, the organic hydrogel is also assembled into a self-powered device in which the open-circuit voltage is 0.74 V. The device can transform external stimuli such as stretching or compressing into the output current change, so it detects human motion effectively in real time. The work provides a perspective for electrical sensing engineering
Beschreibung:Date Completed 02.05.2023
Date Revised 02.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c00292