Plug-and-Play Regulators for Image-Text Matching

Exploiting fine-grained correspondence and visual-semantic alignments has shown great potential in image-text matching. Generally, recent approaches first employ a cross-modal attention unit to capture latent region-word interactions, and then integrate all the alignments to obtain the final similar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 18., Seite 2322-2334
1. Verfasser: Diao, Haiwen (VerfasserIn)
Weitere Verfasser: Zhang, Ying, Liu, Wei, Ruan, Xiang, Lu, Huchuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355754193
003 DE-627
005 20231226065018.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3266887  |2 doi 
028 5 2 |a pubmed24n1185.xml 
035 |a (DE-627)NLM355754193 
035 |a (NLM)37071519 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Diao, Haiwen  |e verfasserin  |4 aut 
245 1 0 |a Plug-and-Play Regulators for Image-Text Matching 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.04.2023 
500 |a Date Revised 24.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Exploiting fine-grained correspondence and visual-semantic alignments has shown great potential in image-text matching. Generally, recent approaches first employ a cross-modal attention unit to capture latent region-word interactions, and then integrate all the alignments to obtain the final similarity. However, most of them adopt one-time forward association or aggregation strategies with complex architectures or additional information, while ignoring the regulation ability of network feedback. In this paper, we develop two simple but quite effective regulators which efficiently encode the message output to automatically contextualize and aggregate cross-modal representations. Specifically, we propose (i) a Recurrent Correspondence Regulator (RCR) which facilitates the cross-modal attention unit progressively with adaptive attention factors to capture more flexible correspondence, and (ii) a Recurrent Aggregation Regulator (RAR) which adjusts the aggregation weights repeatedly to increasingly emphasize important alignments and dilute unimportant ones. Besides, it is interesting that RCR and RAR are "plug-and-play": both of them can be incorporated into many frameworks based on cross-modal interaction to obtain significant benefits, and their cooperation achieves further improvements. Extensive experiments on MSCOCO and Flickr30K datasets validate that they can bring an impressive and consistent R1 gain on multiple models, confirming the general effectiveness and generalization ability of the proposed methods 
650 4 |a Journal Article 
700 1 |a Zhang, Ying  |e verfasserin  |4 aut 
700 1 |a Liu, Wei  |e verfasserin  |4 aut 
700 1 |a Ruan, Xiang  |e verfasserin  |4 aut 
700 1 |a Lu, Huchuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 18., Seite 2322-2334  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:18  |g pages:2322-2334 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3266887  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 18  |h 2322-2334