Dynamical Hyperspectral Unmixing With Variational Recurrent Neural Networks

Multitemporal hyperspectral unmixing (MTHU) is a fundamental tool in the analysis of hyperspectral image sequences. It reveals the dynamical evolution of the materials (endmembers) and of their proportions (abundances) in a given scene. However, adequately accounting for the spatial and temporal var...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 17., Seite 2279-2294
1. Verfasser: Borsoi, Ricardo A (VerfasserIn)
Weitere Verfasser: Imbiriba, Tales, Closas, Pau
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355719991
003 DE-627
005 20231226064934.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3266660  |2 doi 
028 5 2 |a pubmed24n1185.xml 
035 |a (DE-627)NLM355719991 
035 |a (NLM)37067972 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Borsoi, Ricardo A  |e verfasserin  |4 aut 
245 1 0 |a Dynamical Hyperspectral Unmixing With Variational Recurrent Neural Networks 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.04.2023 
500 |a Date Revised 24.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multitemporal hyperspectral unmixing (MTHU) is a fundamental tool in the analysis of hyperspectral image sequences. It reveals the dynamical evolution of the materials (endmembers) and of their proportions (abundances) in a given scene. However, adequately accounting for the spatial and temporal variability of the endmembers in MTHU is challenging, and has not been fully addressed so far in unsupervised frameworks. In this work, we propose an unsupervised MTHU algorithm based on variational recurrent neural networks. First, a stochastic model is proposed to represent both the dynamical evolution of the endmembers and their abundances, as well as the mixing process. Moreover, a new model based on a low-dimensional parametrization is used to represent spatial and temporal endmember variability, significantly reducing the amount of variables to be estimated. We propose to formulate MTHU as a Bayesian inference problem. However, the solution to this problem does not have an analytical solution due to the nonlinearity and non-Gaussianity of the model. Thus, we propose a solution based on deep variational inference, in which the posterior distribution of the estimated abundances and endmembers is represented by using a combination of recurrent neural networks and a physically motivated model. The parameters of the model are learned using stochastic backpropagation. Experimental results show that the proposed method outperforms state of the art MTHU algorithms 
650 4 |a Journal Article 
700 1 |a Imbiriba, Tales  |e verfasserin  |4 aut 
700 1 |a Closas, Pau  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 17., Seite 2279-2294  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:17  |g pages:2279-2294 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3266660  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 17  |h 2279-2294