FSNet : Focus Scanning Network for Camouflaged Object Detection

Camouflaged object detection (COD) aims to discover objects that blend in with the background due to similar colors or textures, etc. Existing deep learning methods do not systematically illustrate the key tasks in COD, which seriously hinders the improvement of its performance. In this paper, we in...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 2267-2278
Auteur principal: Song, Ze (Auteur)
Autres auteurs: Kang, Xudong, Wei, Xiaohui, Liu, Haibo, Dian, Renwei, Li, Shutao
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM355719983
003 DE-627
005 20250304161629.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3266659  |2 doi 
028 5 2 |a pubmed25n1185.xml 
035 |a (DE-627)NLM355719983 
035 |a (NLM)37067971 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Ze  |e verfasserin  |4 aut 
245 1 0 |a FSNet  |b Focus Scanning Network for Camouflaged Object Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.04.2023 
500 |a Date Revised 24.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Camouflaged object detection (COD) aims to discover objects that blend in with the background due to similar colors or textures, etc. Existing deep learning methods do not systematically illustrate the key tasks in COD, which seriously hinders the improvement of its performance. In this paper, we introduce the concept of focus areas that represent some regions containing discernable colors or textures, and develop a two-stage focus scanning network for camouflaged object detection. Specifically, a novel encoder-decoder module is first designed to determine a region where the focus areas may appear. In this process, a multi-layer Swin transformer is deployed to encode global context information between the object and the background, and a novel cross-connection decoder is proposed to fuse cross-layer textures or semantics. Then, we utilize the multi-scale dilated convolution to obtain discriminative features with different scales in focus areas. Meanwhile, the dynamic difficulty aware loss is designed to guide the network paying more attention to structural details. Extensive experimental results on the benchmarks, including CAMO, CHAMELEON, COD10K, and NC4K, illustrate that the proposed method performs favorably against other state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Kang, Xudong  |e verfasserin  |4 aut 
700 1 |a Wei, Xiaohui  |e verfasserin  |4 aut 
700 1 |a Liu, Haibo  |e verfasserin  |4 aut 
700 1 |a Dian, Renwei  |e verfasserin  |4 aut 
700 1 |a Li, Shutao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 01., Seite 2267-2278  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:01  |g pages:2267-2278 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3266659  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 01  |h 2267-2278