Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 52 vom: 01. Dez., Seite e2302552
1. Verfasser: Zhong, Yang (VerfasserIn)
Weitere Verfasser: Yang, Jia, Wang, Xueying, Liu, Yikun, Cai, Qianqian, Tan, Licheng, Chen, Yiwang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review device engineering intrinsic stability ion migration optimization strategy perovskite solar cells
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
In recent years, organic-inorganic halide perovskites are now emerging as the most attractive alternatives for next-generation photovoltaic devices, due to their excellent optoelectronic characteristics and low manufacturing cost. However, the resultant perovskite solar cells (PVSCs) are intrinsically unstable owing to ion migration, which severely impedes performance enhancement, even with device encapsulation. There is no doubt that the investigation of ion migration and the summarization of recent advances in inhibition strategies are necessary to develop "state-of-the-art" PVSCs with high intrinsic stability for accelerated commercialization. This review systematically elaborates on the generation and fundamental mechanisms of ion migration in PVSCs, the impact of ion migration on hysteresis, phase segregation, and operational stability, and the characterizations for ion migration in PVSCs. Then, many related works on the strategies for inhibiting ion migration toward highly efficient and stable PVSCs are summarized. Finally, the perspectives on the current obstacles and prospective strategies for inhibition of ion migration in PVSCs to boost operational stability and meet all of the requirements for commercialization success are summarized
Beschreibung:Date Revised 27.12.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202302552