Moisture-Tailored 2D Dion-Jacobson Perovskites for Reconfigurable Optoelectronics
© 2023 Wiley-VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 22 vom: 08. Juni, Seite e2210611 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2023
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article 2D Dion-Jacobson perovskites moisture-tailored fluorescence reversibility reconfigurable optoelectronics reversible photoluminescence tailored hydrogen bonds |
Résumé: | © 2023 Wiley-VCH GmbH. Humidity- and moisture-induced degradation has been a longstanding problem in perovskite materials, affecting their long-term stability during applications. Counterintuitively, the moisture is leveraged to tailor the reversible hydrochromic behaviors of a new series of 2D Dion-Jacobson (DJ) perovskites for reconfigurable optoelectronics. In particular, the hydrogen bonds between organic cations and water molecules can be dynamically modulated via moisture removal/exposure. Remarkably, such modulation confines the movement of the organic cations close to the original position, preventing their escape from crystal lattices. Furthermore, this mechanism is elucidated by theoretical analysis using first-principles calculations and confirmed with the experimental characterizations. The reversible fluorescent transition 2D DJ perovskites show excellent cyclical properties, presenting untapped opportunities for reconfigurable optoelectronic applications. As a proof-of-concept demonstration, an anti-counterfeiting display is shown based on patterned reversible 2D DJ perovskites. The results represent a new avenue of reconfigurable optoelectronic application with 2D DJ perovskites for humidity detection, anti-counterfeiting, sensing, and other emerging photoelectric intelligent technologies |
---|---|
Description: | Date Completed 01.06.2023 Date Revised 01.06.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202210611 |