Water Reactivity in Electrified Interfaces : The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature

Hygroelectric cells deliver hydrogen, hydrogen peroxide, and electric current simultaneously at room temperature from liquid water or vapor. Different cell arrangements allowed the electrical measurements and the detection and measurement of the reaction products by two methods each. Thermodynamic a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 16 vom: 25. Apr., Seite 5840-5850
1. Verfasser: Santos, Leandra P (VerfasserIn)
Weitere Verfasser: Lermen, Diana, Yoshimura, Rafael Galiza, da Silva, Bruno Leuzinger, Galembeck, André, Burgo, Thiago A L, Galembeck, Fernando
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Hygroelectric cells deliver hydrogen, hydrogen peroxide, and electric current simultaneously at room temperature from liquid water or vapor. Different cell arrangements allowed the electrical measurements and the detection and measurement of the reaction products by two methods each. Thermodynamic analysis shows that water dehydrogenation is a non-spontaneous reaction under standard conditions, but it can occur within an open, non-electroneutral system, thus supporting the experimental results. That is a new example of chemical reactivity modification in charged interfaces, analogous to the hydrogen peroxide formation in charged aqueous aerosol droplets. Extension of the experimental methods and the thermodynamic analysis used in this work may allow the prediction of interesting new chemical reactions that are otherwise unexpected. On the other hand, this adds a new facet to the complex behavior of interfaces. Hygroelectric cells shown in this work are built from commodity materials, using standard laboratory or industrial processes that are easily scaled up. Thus, hygroelectricity may eventually become a source of energy and valuable chemicals
Beschreibung:Date Completed 25.04.2023
Date Revised 25.04.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c00186