Remote Water-to-Air Eavesdropping with a Phase-Engineered Impedance Matching Metasurface

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 29 vom: 05. Juli, Seite e2301799
1. Verfasser: Liu, Jingjing (VerfasserIn)
Weitere Verfasser: Li, Zhengwei, Liang, Bin, Cheng, Jian-Chun, Alù, Andrea
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article metasurfaces phase engineering sound transparency water-to-air eavesdropping
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Efficiently receiving underwater sound remotely from air is a long-standing challenge in acoustics hindered by the large impedance mismatch at the water-air interface. Here, a phase-engineered water-air impedance matching metasurface is proposed and experimentally demonstrated for remote and efficient water-to-air eavesdropping. The judiciously designed metasurface with near-unity transmission efficiency, long monitoring distance, and high mechanical stiffness is capable of making the water-air interface acoustically transparent and, at the same time, freewheelingly patterning the transmitted wavefront. This enables efficient control over the effective spatial location of a distant airborne sensor such that it can measure underwater signals with large signal-to-noise ratios as if placed close to the physical underwater source. Such airborne eavesdropping of underwater sound is experimentally demonstrated with a measured sensitivity enhancement of nearly 104 at 8 kHz, far from achievable with the current state-of-the-art methods. Moreover, the opportunities of using the proposed metasurface for cross-media orbital-angular-momentum-multiplexed communication and underwater acoustic window are also demonstrated. This metasurface opens new avenues for communication and sensing in inhomogeneities with totally reflective interfaces, which may be translated to nano-optics and radio frequencies
Beschreibung:Date Revised 20.07.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202301799