Engineering the Hydrophobic Microenvironment in Polystyrene-Supported Artificial Catalytic Triad Nanocatalysts : An Effective Strategy for Improving Catalytic Performance

Hydrophobic environments have been identified as one of the main parameters affecting the catalytic performance of artificial catalytic triads but are often ignored as an approach to engineering these catalysts. Here, we have developed a simple yet powerful strategy to engineer the hydrophobic envir...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 16 vom: 25. Apr., Seite 5929-5935
1. Verfasser: Wang, Zihao (VerfasserIn)
Weitere Verfasser: Lu, Yizhuo, Yang, Jinxiang, Xiao, Wei, Chen, Tianyou, Yi, Changfeng, Xu, Zushun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Hydrophobic environments have been identified as one of the main parameters affecting the catalytic performance of artificial catalytic triads but are often ignored as an approach to engineering these catalysts. Here, we have developed a simple yet powerful strategy to engineer the hydrophobic environment in polystyrene-supported artificial catalytic triad (PSACT) nanocatalysts. Hydrophobic copolymers containing either oligo(ethylene glycol) side chains or hydrocarbon side chains were synthesized and used for the preparation of nanocatalysts through nanoprecipitation in aqueous media. By using the hydrolysis of 4-nitrophenyl acetate (4NA) as a model reaction, we studied the influence of chemical structures and effective constituent ratios of hydrophobic copolymers on the catalytic performance of PSACT nanocatalysts. Additionally, PSACT nanocatalysts could catalyze the hydrolysis of a few carboxylic esters, even polymers, and be reused for five consecutive runs without significant loss of catalytic activity. This strategy may open an avenue for engineering other artificial enzymes, and these PSACT nanocatalysts have potential applications for the hydrolysis of carboxylic esters
Beschreibung:Date Completed 25.04.2023
Date Revised 25.04.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c00486