Motion-Compensated Predictive RAHT for Dynamic Point Clouds
We study the use of predictive approaches alongside the region-adaptive hierarchical transform (RAHT) in attribute compression of dynamic point clouds. The use of intra-frame prediction with RAHT was shown to improve attribute compression performance over pure RAHT and represents the state-of-the-ar...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 11., Seite 2428-2437 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | We study the use of predictive approaches alongside the region-adaptive hierarchical transform (RAHT) in attribute compression of dynamic point clouds. The use of intra-frame prediction with RAHT was shown to improve attribute compression performance over pure RAHT and represents the state-of-the-art in attribute compression of point clouds, being part of MPEG's geometry-based test model. We studied a combination of inter-frame and intra-frame prediction for RAHT for the compression of dynamic point clouds. An adaptive zero-motion-vector (ZMV) scheme and an adaptive motion-compensated scheme are developed. The simple adaptive ZMV approach is able to achieve sizable gains over pure RAHT and over the intra-frame predictive RAHT (I-RAHT) for point clouds with little or no motion while ensuring similar compression performance to I-RAHT for point clouds with intense motion. The motion-compensated approach, more complex and more powerful, is able to achieve large gains across all of the tested dynamic point clouds |
---|---|
Beschreibung: | Date Completed 02.05.2023 Date Revised 02.05.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2023.3265264 |