|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM355390205 |
003 |
DE-627 |
005 |
20231226064238.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1029/2022GL098591
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1184.xml
|
035 |
|
|
|a (DE-627)NLM355390205
|
035 |
|
|
|a (NLM)37034392
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kurth, W S
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Juno Plasma Wave Observations at Ganymede
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 11.04.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022. The Authors.
|
520 |
|
|
|a The Juno Waves instrument measured plasma waves associated with Ganymede's magnetosphere during its flyby on 7 June, day 158, 2021. Three distinct regions were identified including a wake, and nightside and dayside regions in the magnetosphere distinguished by their electron densities and associated variability. The magnetosphere includes electron cyclotron harmonic emissions including a band at the upper hybrid frequency, as well as whistler-mode chorus and hiss. These waves likely interact with energetic electrons in Ganymede's magnetosphere by pitch angle scattering and/or accelerating the electrons. The wake is accentuated by low-frequency turbulence and electrostatic solitary waves. Radio emissions observed before and after the flyby likely have their source in Ganymede's magnetosphere
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Ganymede
|
650 |
|
4 |
|a Juno
|
650 |
|
4 |
|a plasma waves
|
700 |
1 |
|
|a Sulaiman, A H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hospodarsky, G B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Menietti, J D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mauk, B H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Clark, G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Allegrini, F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Valek, P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Connerney, J E P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Waite, J H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bolton, S J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Imai, M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Santolik, O
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Duling, S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Saur, J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Louis, C
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Geophysical research letters
|d 1984
|g 49(2022), 23 vom: 16. Dez., Seite e2022GL098591
|w (DE-627)NLM098182501
|x 0094-8276
|7 nnns
|
773 |
1 |
8 |
|g volume:49
|g year:2022
|g number:23
|g day:16
|g month:12
|g pages:e2022GL098591
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1029/2022GL098591
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 49
|j 2022
|e 23
|b 16
|c 12
|h e2022GL098591
|