AA-forecast : anomaly-aware forecast for extreme events

© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author sel...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Data mining and knowledge discovery. - 2003. - 37(2023), 3 vom: 30., Seite 1209-1229
1. Verfasser: Farhangi, Ashkan (VerfasserIn)
Weitere Verfasser: Bian, Jiang, Huang, Arthur, Xiong, Haoyi, Wang, Jun, Guo, Zhishan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Data mining and knowledge discovery
Schlagworte:Journal Article Anomaly decomposition Time series forecasting Uncertainty optimization
LEADER 01000naa a22002652 4500
001 NLM355387506
003 DE-627
005 20231226064235.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10618-023-00919-7  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355387506 
035 |a (NLM)37034121 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Farhangi, Ashkan  |e verfasserin  |4 aut 
245 1 0 |a AA-forecast  |b anomaly-aware forecast for extreme events 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 
520 |a Time series models often are impacted by extreme events and anomalies, both prevalent in real-world datasets. Such models require careful probabilistic forecasts, which is vital in risk management for extreme events such as hurricanes and pandemics. However, it's challenging to automatically detect and learn from extreme events and anomalies for large-scale datasets which often results in extra manual efforts. Here, we propose an anomaly-aware forecast framework that leverages the effects of anomalies to improve its prediction accuracy during the presence of extreme events. Our model has trained to extract anomalies automatically and incorporates them through an attention mechanism to increase the accuracy of forecasts during extreme events. Moreover, the framework employs a dynamic uncertainty optimization algorithm that reduces the uncertainty of forecasts in an online manner. The proposed framework demonstrated consistent superior accuracy with less uncertainty on three datasets with different varieties of anomalies over the current prediction models 
650 4 |a Journal Article 
650 4 |a Anomaly decomposition 
650 4 |a Time series forecasting 
650 4 |a Uncertainty optimization 
700 1 |a Bian, Jiang  |e verfasserin  |4 aut 
700 1 |a Huang, Arthur  |e verfasserin  |4 aut 
700 1 |a Xiong, Haoyi  |e verfasserin  |4 aut 
700 1 |a Wang, Jun  |e verfasserin  |4 aut 
700 1 |a Guo, Zhishan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Data mining and knowledge discovery  |d 2003  |g 37(2023), 3 vom: 30., Seite 1209-1229  |w (DE-627)NLM191691062  |x 1384-5810  |7 nnns 
773 1 8 |g volume:37  |g year:2023  |g number:3  |g day:30  |g pages:1209-1229 
856 4 0 |u http://dx.doi.org/10.1007/s10618-023-00919-7  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_61 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_121 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2043 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2162 
951 |a AR 
952 |d 37  |j 2023  |e 3  |b 30  |h 1209-1229