Are Metrics Enough? Guidelines for Communicating and Visualizing Predictive Models to Subject Matter Experts

Presenting a predictive model's performance is a communication bottleneck that threatens collaborations between data scientists and subject matter experts. Accuracy and error metrics alone fail to tell the whole story of a model - its risks, strengths, and limitations - making it difficult for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 7 vom: 07. Juni, Seite 4137-4153
1. Verfasser: Suh, Ashley (VerfasserIn)
Weitere Verfasser: Appleby, Gabriel, Anderson, Erik W, Finelli, Luca, Chang, Remco, Cashman, Dylan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM355354128
003 DE-627
005 20240628231901.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3259341  |2 doi 
028 5 2 |a pubmed24n1454.xml 
035 |a (DE-627)NLM355354128 
035 |a (NLM)37030764 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Suh, Ashley  |e verfasserin  |4 aut 
245 1 0 |a Are Metrics Enough? Guidelines for Communicating and Visualizing Predictive Models to Subject Matter Experts 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.06.2024 
500 |a Date Revised 28.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Presenting a predictive model's performance is a communication bottleneck that threatens collaborations between data scientists and subject matter experts. Accuracy and error metrics alone fail to tell the whole story of a model - its risks, strengths, and limitations - making it difficult for subject matter experts to feel confident in their decision to use a model. As a result, models may fail in unexpected ways or go entirely unused, as subject matter experts disregard poorly presented models in favor of familiar, yet arguably substandard methods. In this paper, we describe an iterative study conducted with both subject matter experts and data scientists to understand the gaps in communication between these two groups. We find that, while the two groups share common goals of understanding the data and predictions of the model, friction can stem from unfamiliar terms, metrics, and visualizations - limiting the transfer of knowledge to SMEs and discouraging clarifying questions being asked during presentations. Based on our findings, we derive a set of communication guidelines that use visualization as a common medium for communicating the strengths and weaknesses of a model. We provide a demonstration of our guidelines in a regression modeling scenario and elicit feedback on their use from subject matter experts. From our demonstration, subject matter experts were more comfortable discussing a model's performance, more aware of the trade-offs for the presented model, and better equipped to assess the model's risks - ultimately informing and contextualizing the model's use beyond text and numbers 
650 4 |a Journal Article 
700 1 |a Appleby, Gabriel  |e verfasserin  |4 aut 
700 1 |a Anderson, Erik W  |e verfasserin  |4 aut 
700 1 |a Finelli, Luca  |e verfasserin  |4 aut 
700 1 |a Chang, Remco  |e verfasserin  |4 aut 
700 1 |a Cashman, Dylan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 7 vom: 07. Juni, Seite 4137-4153  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:7  |g day:07  |g month:06  |g pages:4137-4153 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3259341  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 7  |b 07  |c 06  |h 4137-4153