NeRC : Rendering Planar Caustics by Learning Implicit Neural Representations

Caustics are challenging light transport effects for photo-realistic rendering. Photon mapping techniques play a fundamental role in rendering caustics. However, photon mapping methods render single caustics under the stationary light source in a fixed scene view. They require significant storage an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 7 vom: 07. Juni, Seite 4339-4348
1. Verfasser: Qiu, Jiaxiong (VerfasserIn)
Weitere Verfasser: Yin, Ze-Xin, Cheng, Ming-Ming, Ren, Bo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM355354098
003 DE-627
005 20240628231901.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3259382  |2 doi 
028 5 2 |a pubmed24n1454.xml 
035 |a (DE-627)NLM355354098 
035 |a (NLM)37030762 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qiu, Jiaxiong  |e verfasserin  |4 aut 
245 1 0 |a NeRC  |b Rendering Planar Caustics by Learning Implicit Neural Representations 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Caustics are challenging light transport effects for photo-realistic rendering. Photon mapping techniques play a fundamental role in rendering caustics. However, photon mapping methods render single caustics under the stationary light source in a fixed scene view. They require significant storage and computing resources to produce high-quality results. In this paper, we propose efficiently rendering more diverse caustics of a scene with the camera and the light source moving. We present a novel learning-based volume rendering approach with implicit representations for our proposed task. Considering the variety of materials and textures of planar caustic receivers, we decompose the output appearance into two components: the diffuse and specular parts with a probabilistic module. Unlike NeRF, we construct weights for rendering each component from the implicit signed distance function (SDF). Moreover, we introduce the centering calibration and the sine activation function to improve the performance of the color prediction network. Extensive experiments on the synthetic and real-world datasets illustrate that our method achieves much better performance than baselines in the quantitative and qualitative comparison, for rendering caustics in novel views with the dynamic light source. Especially, our method outperforms the baseline on the temporal consistency across frames 
650 4 |a Journal Article 
700 1 |a Yin, Ze-Xin  |e verfasserin  |4 aut 
700 1 |a Cheng, Ming-Ming  |e verfasserin  |4 aut 
700 1 |a Ren, Bo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 7 vom: 07. Juni, Seite 4339-4348  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:7  |g day:07  |g month:06  |g pages:4339-4348 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3259382  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 7  |b 07  |c 06  |h 4339-4348