Attention-Guided Neural Networks for Full-Reference and No-Reference Audio-Visual Quality Assessment

With the popularity of mobile Internet, audio and video (A/V) have become the main way for people to entertain and socialize daily. However, in order to reduce the cost of media storage and transmission, A/V signals will be compressed by service providers before they are transmitted to end-users, wh...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 19., Seite 1882-1896
1. Verfasser: Cao, Yuqin (VerfasserIn)
Weitere Verfasser: Min, Xiongkuo, Sun, Wei, Zhai, Guangtao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM355353784
003 DE-627
005 20250509103809.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3251695  |2 doi 
028 5 2 |a pubmed25n1365.xml 
035 |a (DE-627)NLM355353784 
035 |a (NLM)37030730 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cao, Yuqin  |e verfasserin  |4 aut 
245 1 0 |a Attention-Guided Neural Networks for Full-Reference and No-Reference Audio-Visual Quality Assessment 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With the popularity of mobile Internet, audio and video (A/V) have become the main way for people to entertain and socialize daily. However, in order to reduce the cost of media storage and transmission, A/V signals will be compressed by service providers before they are transmitted to end-users, which inevitably causes distortions in the A/V signals and degrades the end-user's Quality of Experience (QoE). This motivates us to research the objective audio-visual quality assessment (AVQA). In the field of AVQA, most previous works only focus on single-mode audio or visual signals, which ignores that the perceptual quality of users depends on both audio and video signals. Therefore, we propose an objective AVQA architecture for multi-mode signals based on attentional neural networks. Specifically, we first utilize an attention prediction model to extract the salient regions of video frames. Then, a pre-trained convolutional neural network is used to extract short-time features of the salient regions and the corresponding audio signals. Next, the short-time features are fed into Gated Recurrent Unit (GRU) networks to model the temporal relationship between adjacent frames. Finally, the fully connected layers are utilized to fuse the temporal related features of A/V signals modeled by the GRU network into the final quality score. The proposed architecture is flexible and can be applied to both full-reference and no-reference AVQA. Experimental results on the LIVE-SJTU Database and UnB-AVC Database demonstrate that our model outperforms the state-of-the-art AVQA methods. The code of the proposed method will be publicly available to promote the development of the field of AVQA 
650 4 |a Journal Article 
700 1 |a Min, Xiongkuo  |e verfasserin  |4 aut 
700 1 |a Sun, Wei  |e verfasserin  |4 aut 
700 1 |a Zhai, Guangtao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 19., Seite 1882-1896  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:19  |g pages:1882-1896 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3251695  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 19  |h 1882-1896