DAQE : Enhancing the Quality of Compressed Images by Exploiting the Inherent Characteristic of Defocus

Image defocus is inherent in the physics of image formation caused by the optical aberration of lenses, providing plentiful information on image quality. Unfortunately, existing quality enhancement approaches for compressed images neglect the inherent characteristic of defocus, resulting in inferior...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 16. Aug., Seite 9611-9626
1. Verfasser: Xing, Qunliang (VerfasserIn)
Weitere Verfasser: Xu, Mai, Deng, Xin, Guo, Yichen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355353695
003 DE-627
005 20231226064153.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3257888  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355353695 
035 |a (NLM)37030722 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xing, Qunliang  |e verfasserin  |4 aut 
245 1 0 |a DAQE  |b Enhancing the Quality of Compressed Images by Exploiting the Inherent Characteristic of Defocus 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.07.2023 
500 |a Date Revised 07.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image defocus is inherent in the physics of image formation caused by the optical aberration of lenses, providing plentiful information on image quality. Unfortunately, existing quality enhancement approaches for compressed images neglect the inherent characteristic of defocus, resulting in inferior performance. This paper finds that in compressed images, significantly defocused regions have better compression quality, and two regions with different defocus values possess diverse texture patterns. These observations motivate our defocus-aware quality enhancement (DAQE) approach. Specifically, we propose a novel dynamic region-based deep learning architecture of the DAQE approach, which considers the regionwise defocus difference of compressed images in two aspects. (1) The DAQE approach employs fewer computational resources to enhance the quality of significantly defocused regions and more resources to enhance the quality of other regions; (2) The DAQE approach learns to separately enhance diverse texture patterns for regions with different defocus values, such that texture-specific enhancement can be achieved. Extensive experiments validate the superiority of our DAQE approach over state-of-the-art approaches in terms of quality enhancement and resource savings 
650 4 |a Journal Article 
700 1 |a Xu, Mai  |e verfasserin  |4 aut 
700 1 |a Deng, Xin  |e verfasserin  |4 aut 
700 1 |a Guo, Yichen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 8 vom: 16. Aug., Seite 9611-9626  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:8  |g day:16  |g month:08  |g pages:9611-9626 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3257888  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 8  |b 16  |c 08  |h 9611-9626