CTCNet : A CNN-Transformer Cooperation Network for Face Image Super-Resolution

Recently, deep convolution neural networks (CNNs) steered face super-resolution methods have achieved great progress in restoring degraded facial details by joint training with facial priors. However, these methods have some obvious limitations. On the one hand, multi-task joint learning requires ad...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 1978-1991
1. Verfasser: Gao, Guangwei (VerfasserIn)
Weitere Verfasser: Xu, Zixiang, Li, Juncheng, Yang, Jian, Zeng, Tieyong, Qi, Guo-Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM355353458
003 DE-627
005 20250304152801.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3261747  |2 doi 
028 5 2 |a pubmed25n1184.xml 
035 |a (DE-627)NLM355353458 
035 |a (NLM)37030697 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Guangwei  |e verfasserin  |4 aut 
245 1 0 |a CTCNet  |b A CNN-Transformer Cooperation Network for Face Image Super-Resolution 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Recently, deep convolution neural networks (CNNs) steered face super-resolution methods have achieved great progress in restoring degraded facial details by joint training with facial priors. However, these methods have some obvious limitations. On the one hand, multi-task joint learning requires additional marking on the dataset, and the introduced prior network will significantly increase the computational cost of the model. On the other hand, the limited receptive field of CNN will reduce the fidelity and naturalness of the reconstructed facial images, resulting in suboptimal reconstructed images. In this work, we propose an efficient CNN-Transformer Cooperation Network (CTCNet) for face super-resolution tasks, which uses the multi-scale connected encoder-decoder architecture as the backbone. Specifically, we first devise a novel Local-Global Feature Cooperation Module (LGCM), which is composed of a Facial Structure Attention Unit (FSAU) and a Transformer block, to promote the consistency of local facial detail and global facial structure restoration simultaneously. Then, we design an efficient Feature Refinement Module (FRM) to enhance the encoded features. Finally, to further improve the restoration of fine facial details, we present a Multi-scale Feature Fusion Unit (MFFU) to adaptively fuse the features from different stages in the encoder procedure. Extensive evaluations on various datasets have assessed that the proposed CTCNet can outperform other state-of-the-art methods significantly. Source code will be available at https://github.com/IVIPLab/CTCNet 
650 4 |a Journal Article 
700 1 |a Xu, Zixiang  |e verfasserin  |4 aut 
700 1 |a Li, Juncheng  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
700 1 |a Zeng, Tieyong  |e verfasserin  |4 aut 
700 1 |a Qi, Guo-Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 01., Seite 1978-1991  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:01  |g pages:1978-1991 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3261747  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 01  |h 1978-1991