Learning to Learn Task-Adaptive Hyperparameters for Few-Shot Learning

The objective of few-shot learning is to design a system that can adapt to a given task with only few examples while achieving generalization. Model-agnostic meta-learning (MAML), which has recently gained the popularity for its simplicity and flexibility, learns a good initialization for fast adapt...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 3 vom: 01. Feb., Seite 1441-1454
1. Verfasser: Baik, Sungyong (VerfasserIn)
Weitere Verfasser: Choi, Myungsub, Choi, Janghoon, Kim, Heewon, Lee, Kyoung Mu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The objective of few-shot learning is to design a system that can adapt to a given task with only few examples while achieving generalization. Model-agnostic meta-learning (MAML), which has recently gained the popularity for its simplicity and flexibility, learns a good initialization for fast adaptation to a task under few-data regime. However, its performance has been relatively limited especially when novel tasks are different from tasks previously seen during training. In this work, instead of searching for a better initialization, we focus on designing a better fast adaptation process. Consequently, we propose a new task-adaptive weight update rule that greatly enhances the fast adaptation process. Specifically, we introduce a small meta-network that can generate per-step hyperparameters for each given task: learning rate and weight decay coefficients. The experimental results validate that learning a good weight update rule for fast adaptation is the equally important component that has drawn relatively less attention in the recent few-shot learning approaches. Surprisingly, fast adaptation from random initialization with ALFA can already outperform MAML. Furthermore, the proposed weight-update rule is shown to consistently improve the task-adaptation capability of MAML across diverse problem domains: few-shot classification, cross-domain few-shot classification, regression, visual tracking, and video frame interpolation
Beschreibung:Date Revised 07.02.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2023.3261387