Mesh Neural Networks Based on Dual Graph Pyramids

Deep neural networks (DNNs) have been widely used for mesh processing in recent years. However, current DNNs can not process arbitrary meshes efficiently. On the one hand, most DNNs expect 2-manifold, watertight meshes, but many meshes, whether manually designed or automatically generated, may have...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 7 vom: 05. Juni, Seite 4211-4224
1. Verfasser: Li, Xiang-Li (VerfasserIn)
Weitere Verfasser: Liu, Zheng-Ning, Chen, Tuo, Mu, Tai-Jiang, Martin, Ralph R, Hu, Shi-Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM355330008
003 DE-627
005 20240628231900.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3257035  |2 doi 
028 5 2 |a pubmed24n1454.xml 
035 |a (DE-627)NLM355330008 
035 |a (NLM)37028344 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xiang-Li  |e verfasserin  |4 aut 
245 1 0 |a Mesh Neural Networks Based on Dual Graph Pyramids 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep neural networks (DNNs) have been widely used for mesh processing in recent years. However, current DNNs can not process arbitrary meshes efficiently. On the one hand, most DNNs expect 2-manifold, watertight meshes, but many meshes, whether manually designed or automatically generated, may have gaps, non-manifold geometry, or other defects. On the other hand, the irregular structure of meshes also brings challenges to building hierarchical structures and aggregating local geometric information, which is critical to conduct DNNs. In this paper, we present DGNet, an efficient, effective and generic deep neural mesh processing network based on dual graph pyramids; it can handle arbitrary meshes. First, we construct dual graph pyramids for meshes to guide feature propagation between hierarchical levels for both downsampling and upsampling. Second, we propose a novel convolution to aggregate local features on the proposed hierarchical graphs. By utilizing both geodesic neighbors and euclidean neighbors, the network enables feature aggregation both within local surface patches and between isolated mesh components. Experimental results demonstrate that DGNet can be applied to both shape analysis and large-scale scene understanding. Furthermore, it achieves superior performance on various benchmarks, including ShapeNetCore, HumanBody, ScanNet and Matterport3D. Code and models will be available at https://github.com/li-xl/DGNet 
650 4 |a Journal Article 
700 1 |a Liu, Zheng-Ning  |e verfasserin  |4 aut 
700 1 |a Chen, Tuo  |e verfasserin  |4 aut 
700 1 |a Mu, Tai-Jiang  |e verfasserin  |4 aut 
700 1 |a Martin, Ralph R  |e verfasserin  |4 aut 
700 1 |a Hu, Shi-Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 7 vom: 05. Juni, Seite 4211-4224  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:7  |g day:05  |g month:06  |g pages:4211-4224 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3257035  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 7  |b 05  |c 06  |h 4211-4224