Generative Inference Network for Imbalanced Domain Generalization

Domain generalization (DG) aims to learn transferable knowledge from multiple source domains and generalize it to the unseen target domain. To achieve such expectation, the intuitive solution is to seek domain-invariant representations via generative adversarial mechanism or minimization of cross-do...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 06. März
1. Verfasser: Xia, Haifeng (VerfasserIn)
Weitere Verfasser: Jing, Taotao, Ding, Zhengming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355327120
003 DE-627
005 20231226064119.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3251103  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355327120 
035 |a (NLM)37028055 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xia, Haifeng  |e verfasserin  |4 aut 
245 1 0 |a Generative Inference Network for Imbalanced Domain Generalization 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Domain generalization (DG) aims to learn transferable knowledge from multiple source domains and generalize it to the unseen target domain. To achieve such expectation, the intuitive solution is to seek domain-invariant representations via generative adversarial mechanism or minimization of cross-domain discrepancy. However, the widespread imbalanced data scale problem across source domains and category in real-world applications becomes the key bottleneck of improving generalization ability of model due to its negative effect on learning the robust classification model. Motivated by this observation, we first formulate a practical and challenging imbalance domain generalization (IDG) scenario, and then propose a straightforward but effective novel method generative inference network (GINet), which augments reliable samples for minority domain/category to promote discriminative ability of the learned model. Concretely, GINet utilizes the available cross-domain images from the identical category and estimates their common latent variable, which derives to discover domain-invariant knowledge for unseen target domain. According to these latent variables, our GINet further generates more novel samples with optimal transport constraint and deploys them to enhance the desired model with more robustness and generalization ability. Considerable empirical analysis and ablation studies on three popular benchmarks under normal DG and IDG setups suggests the advantage of our method over other DG methods on elevating model generalization. The source code is available in GitHub https://github.com/HaifengXia/IDG 
650 4 |a Journal Article 
700 1 |a Jing, Taotao  |e verfasserin  |4 aut 
700 1 |a Ding, Zhengming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 06. März  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:06  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3251103  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 06  |c 03