Fast Multi-grid Methods for Minimizing Curvature Energies

The geometric high-order regularization methods such as mean curvature and Gaussian curvature, have been intensively studied during the last decades due to their abilities in preserving geometric properties including image edges, corners, and contrast. However, the dilemma between restoration qualit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 06. März
1. Verfasser: Zhang, Zhenwei (VerfasserIn)
Weitere Verfasser: Chen, Ke, Tang, Ke, Duan, Yuping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355327104
003 DE-627
005 20231226064119.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3251024  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355327104 
035 |a (NLM)37028053 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Zhenwei  |e verfasserin  |4 aut 
245 1 0 |a Fast Multi-grid Methods for Minimizing Curvature Energies 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The geometric high-order regularization methods such as mean curvature and Gaussian curvature, have been intensively studied during the last decades due to their abilities in preserving geometric properties including image edges, corners, and contrast. However, the dilemma between restoration quality and computational efficiency is an essential roadblock for high-order methods. In this paper, we propose fast multi-grid algorithms for minimizing both mean curvature and Gaussian curvature energy functionals without sacrificing accuracy for efficiency. Unlike the existing approaches based on operator splitting and the Augmented Lagrangian method (ALM), no artificial parameters are introduced in our formulation, which guarantees the robustness of the proposed algorithm. Meanwhile, we adopt the domain decomposition method to promote parallel computing and use the fine-to-coarse structure to accelerate convergence. Numerical experiments are presented on image denoising, CT, and MRI reconstruction problems to demonstrate the superiority of our method in preserving geometric structures and fine details. The proposed method is also shown effective in dealing with large-scale image processing problems by recovering an image of size 1024×1024 within 40s, while the ALM method [1] requires around 200s 
650 4 |a Journal Article 
700 1 |a Chen, Ke  |e verfasserin  |4 aut 
700 1 |a Tang, Ke  |e verfasserin  |4 aut 
700 1 |a Duan, Yuping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 06. März  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:06  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3251024  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 06  |c 03