Event-based Semantic Segmentation with Posterior Attention

In the past years, attention-based Transformers have swept across the field of computer vision, starting a new stage of backbones in semantic segmentation. Nevertheless, semantic segmentation under poor light conditions remains an open problem. Moreover, most papers about semantic segmentation work...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 03. März
1. Verfasser: Jia, Zexi (VerfasserIn)
Weitere Verfasser: You, Kaichao, He, Weihua, Tian, Yang, Feng, Yongxiang, Wang, Yaoyuan, Jia, Xu, Lou, Yihang, Zhang, Jingyi, Li, Guoqi, Zhang, Ziyang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355327074
003 DE-627
005 20231226064119.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3249579  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355327074 
035 |a (NLM)37028052 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia, Zexi  |e verfasserin  |4 aut 
245 1 0 |a Event-based Semantic Segmentation with Posterior Attention 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In the past years, attention-based Transformers have swept across the field of computer vision, starting a new stage of backbones in semantic segmentation. Nevertheless, semantic segmentation under poor light conditions remains an open problem. Moreover, most papers about semantic segmentation work on images produced by commodity frame-based cameras with a limited framerate, hindering their deployment to auto-driving systems that require instant perception and response at milliseconds. An event camera is a new sensor that generates event data at microseconds and can work in poor light conditions with a high dynamic range. It looks promising to leverage event cameras to enable perception where commodity cameras are incompetent, but algorithms for event data are far from mature. Pioneering researchers stack event data as frames so that event-based segmentation is converted to framebased segmentation, but characteristics of event data are not explored. Noticing that event data naturally highlight moving objects, we propose a posterior attention module that adjusts the standard attention by the prior knowledge provided by event data. The posterior attention module can be readily plugged into many segmentation backbones. Plugging the posterior attention module into a recently proposed SegFormer network, we get EvSegFormer (the event-based version of SegFormer) with state-of-the-art performance in two datasets (MVSEC and DDD-17) collected for event-based segmentation. Code is available at https://github.com/zexiJia/EvSegFormer to facilitate research on event-based vision 
650 4 |a Journal Article 
700 1 |a You, Kaichao  |e verfasserin  |4 aut 
700 1 |a He, Weihua  |e verfasserin  |4 aut 
700 1 |a Tian, Yang  |e verfasserin  |4 aut 
700 1 |a Feng, Yongxiang  |e verfasserin  |4 aut 
700 1 |a Wang, Yaoyuan  |e verfasserin  |4 aut 
700 1 |a Jia, Xu  |e verfasserin  |4 aut 
700 1 |a Lou, Yihang  |e verfasserin  |4 aut 
700 1 |a Zhang, Jingyi  |e verfasserin  |4 aut 
700 1 |a Li, Guoqi  |e verfasserin  |4 aut 
700 1 |a Zhang, Ziyang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 03. März  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:03  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3249579  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 03  |c 03