Contrastive Multi-View Kernel Learning

Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approach...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 06. Aug., Seite 9552-9566
1. Verfasser: Liu, Jiyuan (VerfasserIn)
Weitere Verfasser: Liu, Xinwang, Yang, Yuexiang, Liao, Qing, Xia, Yuanqing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355327031
003 DE-627
005 20231226064119.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3253211  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355327031 
035 |a (NLM)37028046 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Jiyuan  |e verfasserin  |4 aut 
245 1 0 |a Contrastive Multi-View Kernel Learning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2023 
500 |a Date Revised 03.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel - a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel k-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning 
650 4 |a Journal Article 
700 1 |a Liu, Xinwang  |e verfasserin  |4 aut 
700 1 |a Yang, Yuexiang  |e verfasserin  |4 aut 
700 1 |a Liao, Qing  |e verfasserin  |4 aut 
700 1 |a Xia, Yuanqing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 8 vom: 06. Aug., Seite 9552-9566  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:8  |g day:06  |g month:08  |g pages:9552-9566 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3253211  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 8  |b 06  |c 08  |h 9552-9566