Implicit Neural Representations With Structured Latent Codes for Human Body Modeling

This paper addresses the challenge of novel view synthesis for a human performer from a very sparse set of camera views. Some recent works have shown that learning implicit neural representations of 3D scenes achieves remarkable view synthesis quality given dense input views. However, the representa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 07. Aug., Seite 9895-9907
1. Verfasser: Peng, Sida (VerfasserIn)
Weitere Verfasser: Geng, Chen, Zhang, Yuanqing, Xu, Yinghao, Wang, Qianqian, Shuai, Qing, Zhou, Xiaowei, Bao, Hujun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM355324245
003 DE-627
005 20250104232758.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3245815  |2 doi 
028 5 2 |a pubmed24n1651.xml 
035 |a (DE-627)NLM355324245 
035 |a (NLM)37027766 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peng, Sida  |e verfasserin  |4 aut 
245 1 0 |a Implicit Neural Representations With Structured Latent Codes for Human Body Modeling 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2023 
500 |a Date Revised 03.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper addresses the challenge of novel view synthesis for a human performer from a very sparse set of camera views. Some recent works have shown that learning implicit neural representations of 3D scenes achieves remarkable view synthesis quality given dense input views. However, the representation learning will be ill-posed if the views are highly sparse. To solve this ill-posed problem, our key idea is to integrate observations over video frames. To this end, we propose Neural Body, a new human body representation which assumes that the learned neural representations at different frames share the same set of latent codes anchored to a deformable mesh, so that the observations across frames can be naturally integrated. The deformable mesh also provides geometric guidance for the network to learn 3D representations more efficiently. Furthermore, we combine Neural Body with implicit surface models to improve the learned geometry. To evaluate our approach, we perform experiments on both synthetic and real-world data, which show that our approach outperforms prior works by a large margin on novel view synthesis and 3D reconstruction. We also demonstrate the capability of our approach to reconstruct a moving person from a monocular video on the People-Snapshot dataset 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Geng, Chen  |e verfasserin  |4 aut 
700 1 |a Zhang, Yuanqing  |e verfasserin  |4 aut 
700 1 |a Xu, Yinghao  |e verfasserin  |4 aut 
700 1 |a Wang, Qianqian  |e verfasserin  |4 aut 
700 1 |a Shuai, Qing  |e verfasserin  |4 aut 
700 1 |a Zhou, Xiaowei  |e verfasserin  |4 aut 
700 1 |a Bao, Hujun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 8 vom: 07. Aug., Seite 9895-9907  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:8  |g day:07  |g month:08  |g pages:9895-9907 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3245815  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 8  |b 07  |c 08  |h 9895-9907