Normalization Techniques in Training DNNs : Methodology, Analysis and Application

Normalization techniques are essential for accelerating the training and improving the generalization of deep neural networks (DNNs), and have successfully been used in various applications. This paper reviews and comments on the past, present and future of normalization methods in the context of DN...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 15. Aug., Seite 10173-10196
1. Verfasser: Huang, Lei (VerfasserIn)
Weitere Verfasser: Qin, Jie, Zhou, Yi, Zhu, Fan, Liu, Li, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Review Journal Article
LEADER 01000caa a22002652 4500
001 NLM355324202
003 DE-627
005 20231227133632.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3250241  |2 doi 
028 5 2 |a pubmed24n1231.xml 
035 |a (DE-627)NLM355324202 
035 |a (NLM)37027763 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Lei  |e verfasserin  |4 aut 
245 1 0 |a Normalization Techniques in Training DNNs  |b Methodology, Analysis and Application 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.12.2023 
500 |a Date Revised 17.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Normalization techniques are essential for accelerating the training and improving the generalization of deep neural networks (DNNs), and have successfully been used in various applications. This paper reviews and comments on the past, present and future of normalization methods in the context of DNN training. We provide a unified picture of the main motivation behind different approaches from the perspective of optimization, and present a taxonomy for understanding the similarities and differences between them. Specifically, we decompose the pipeline of the most representative normalizing activation methods into three components: the normalization area partitioning, normalization operation and normalization representation recovery. In doing so, we provide insight for designing new normalization technique. Finally, we discuss the current progress in understanding normalization methods, and provide a comprehensive review of the applications of normalization for particular tasks, in which it can effectively solve the key issues 
650 4 |a Review 
650 4 |a Journal Article 
700 1 |a Qin, Jie  |e verfasserin  |4 aut 
700 1 |a Zhou, Yi  |e verfasserin  |4 aut 
700 1 |a Zhu, Fan  |e verfasserin  |4 aut 
700 1 |a Liu, Li  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 8 vom: 15. Aug., Seite 10173-10196  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:8  |g day:15  |g month:08  |g pages:10173-10196 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3250241  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 8  |b 15  |c 08  |h 10173-10196