Augmentation Pathways Network for Visual Recognition

Data augmentation is practically helpful for visual recognition, especially at the time of data scarcity. However, such success is only limited to quite a few light augmentations (e.g., random crop, flip). Heavy augmentations are either unstable or show adverse effects during training, owing to the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 28. Aug., Seite 10580-10587
1. Verfasser: Bai, Yalong (VerfasserIn)
Weitere Verfasser: Zhou, Mohan, Zhang, Wei, Zhou, Bowen, Mei, Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355324199
003 DE-627
005 20231226064116.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3250330  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355324199 
035 |a (NLM)37027762 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bai, Yalong  |e verfasserin  |4 aut 
245 1 0 |a Augmentation Pathways Network for Visual Recognition 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.07.2023 
500 |a Date Revised 07.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Data augmentation is practically helpful for visual recognition, especially at the time of data scarcity. However, such success is only limited to quite a few light augmentations (e.g., random crop, flip). Heavy augmentations are either unstable or show adverse effects during training, owing to the big gap between the original and augmented images. This paper introduces a novel network design, noted as Augmentation Pathways (AP), to systematically stabilize training on a much wider range of augmentation policies. Notably, AP tames various heavy data augmentations and stably boosts performance without a careful selection among augmentation policies. Unlike traditional single pathway, augmented images are processed in different neural paths. The main pathway handles the light augmentations, while other pathways focus on the heavier augmentations. By interacting with multiple paths in a dependent manner, the backbone network robustly learns from shared visual patterns among augmentations, and suppresses the side effect of heavy augmentations at the same time. Furthermore, we extend AP to high-order versions for high-order scenarios, demonstrating its robustness and flexibility in practical usage. Experimental results on ImageNet demonstrate the compatibility and effectiveness on a much wider range of augmentations, while consuming fewer parameters and lower computational costs at inference time 
650 4 |a Journal Article 
700 1 |a Zhou, Mohan  |e verfasserin  |4 aut 
700 1 |a Zhang, Wei  |e verfasserin  |4 aut 
700 1 |a Zhou, Bowen  |e verfasserin  |4 aut 
700 1 |a Mei, Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 8 vom: 28. Aug., Seite 10580-10587  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:8  |g day:28  |g month:08  |g pages:10580-10587 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3250330  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 8  |b 28  |c 08  |h 10580-10587