A Multiscale Approach to Deep Blind Image Quality Assessment

Faithful measurement of perceptual quality is of significant importance to various multimedia applications. By fully utilizing reference images, full-reference image quality assessment (FR-IQA) methods usually achieve better prediction performance. On the other hand, no-reference image quality asses...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 04., Seite 1656-1667
1. Verfasser: Liu, Manni (VerfasserIn)
Weitere Verfasser: Huang, Jiabin, Zeng, Delu, Ding, Xinghao, Paisley, John
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM355324148
003 DE-627
005 20250509103806.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3245991  |2 doi 
028 5 2 |a pubmed25n1365.xml 
035 |a (DE-627)NLM355324148 
035 |a (NLM)37027757 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Manni  |e verfasserin  |4 aut 
245 1 2 |a A Multiscale Approach to Deep Blind Image Quality Assessment 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Faithful measurement of perceptual quality is of significant importance to various multimedia applications. By fully utilizing reference images, full-reference image quality assessment (FR-IQA) methods usually achieve better prediction performance. On the other hand, no-reference image quality assessment (NR-IQA), also known as blind image quality assessment (BIQA), which does not consider the reference image, makes it a challenging but important task. Previous NR-IQA methods have focused on spatial measures at the expense of information in the available frequency bands. In this paper, we present a multiscale deep blind image quality assessment method (BIQA, M.D.) with spatial optimal-scale filtering analysis. Motivated by the multi-channel behavior of the human visual system and contrast sensitivity function, we decompose an image into a number of spatial frequency bands through multiscale filtering and extract features to map an image to its subjective quality score by applying convolutional neural network. Experimental results show that BIQA, M.D. compares well with existing NR-IQA methods and generalizes well across datasets 
650 4 |a Journal Article 
700 1 |a Huang, Jiabin  |e verfasserin  |4 aut 
700 1 |a Zeng, Delu  |e verfasserin  |4 aut 
700 1 |a Ding, Xinghao  |e verfasserin  |4 aut 
700 1 |a Paisley, John  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 04., Seite 1656-1667  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:04  |g pages:1656-1667 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3245991  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 04  |h 1656-1667