Toward Effective Domain Adaptive Retrieval

This paper studies the problem of unsupervised domain adaptive hashing, which is less-explored but emerging for efficient image retrieval, particularly for cross-domain retrieval. This problem is typically tackled by learning hashing networks with pseudo-labeling and domain alignment techniques. Nev...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 22., Seite 1285-1299
1. Verfasser: Wang, Haixin (VerfasserIn)
Weitere Verfasser: Sun, Jinan, Luo, Xiao, Xiang, Wei, Zhang, Shikun, Chen, Chong, Hua, Xian-Sheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355324024
003 DE-627
005 20231226064115.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3242777  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355324024 
035 |a (NLM)37027745 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Haixin  |e verfasserin  |4 aut 
245 1 0 |a Toward Effective Domain Adaptive Retrieval 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 14.04.2023 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper studies the problem of unsupervised domain adaptive hashing, which is less-explored but emerging for efficient image retrieval, particularly for cross-domain retrieval. This problem is typically tackled by learning hashing networks with pseudo-labeling and domain alignment techniques. Nevertheless, these approaches usually suffer from overconfident and biased pseudo-labels and inefficient domain alignment without sufficiently exploring semantics, thus failing to achieve satisfactory retrieval performance. To tackle this issue, we present PEACE, a principled framework which holistically explores semantic information in both source and target data and extensively incorporates it for effective domain alignment. For comprehensive semantic learning, PEACE leverages label embeddings to guide the optimization of hash codes for source data. More importantly, to mitigate the effects of noisy pseudo-labels, we propose a novel method to holistically measure the uncertainty of pseudo-labels for unlabeled target data and progressively minimize them through alternative optimization under the guidance of the domain discrepancy. Additionally, PEACE effectively removes domain discrepancy in the Hamming space from two views. In particular, it not only introduces composite adversarial learning to implicitly explore semantic information embedded in hash codes, but also aligns cluster semantic centroids across domains to explicitly exploit label information. Experimental results on several popular domain adaptive retrieval benchmarks demonstrate the superiority of our proposed PEACE compared with various state-of-the-art methods on both single-domain and cross-domain retrieval tasks. Our source codes are available at https://github.com/WillDreamer/PEACE 
650 4 |a Journal Article 
700 1 |a Sun, Jinan  |e verfasserin  |4 aut 
700 1 |a Luo, Xiao  |e verfasserin  |4 aut 
700 1 |a Xiang, Wei  |e verfasserin  |4 aut 
700 1 |a Zhang, Shikun  |e verfasserin  |4 aut 
700 1 |a Chen, Chong  |e verfasserin  |4 aut 
700 1 |a Hua, Xian-Sheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 22., Seite 1285-1299  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:22  |g pages:1285-1299 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3242777  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 22  |h 1285-1299