A Video-Based Augmented Reality System for Human-in-the-Loop Muscle Strength Assessment of Juvenile Dermatomyositis

As the most common idiopathic inflammatory myopathy in children, juvenile dermatomyositis (JDM) is characterized by skin rashes and muscle weakness. The childhood myositis assessment scale (CMAS) is commonly used to measure the degree of muscle involvement for diagnosis or rehabilitation monitoring....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 5 vom: 04. Mai, Seite 2456-2466
1. Verfasser: Zhou, Kanglei (VerfasserIn)
Weitere Verfasser: Cai, Ruizhi, Ma, Yue, Tan, Qingqing, Wang, Xinning, Li, Jianguo, Shum, Hubert P H, Li, Frederick W B, Jin, Song, Liang, Xiaohui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM355324016
003 DE-627
005 20250509103806.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3247092  |2 doi 
028 5 2 |a pubmed25n1365.xml 
035 |a (DE-627)NLM355324016 
035 |a (NLM)37027743 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Kanglei  |e verfasserin  |4 aut 
245 1 2 |a A Video-Based Augmented Reality System for Human-in-the-Loop Muscle Strength Assessment of Juvenile Dermatomyositis 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a As the most common idiopathic inflammatory myopathy in children, juvenile dermatomyositis (JDM) is characterized by skin rashes and muscle weakness. The childhood myositis assessment scale (CMAS) is commonly used to measure the degree of muscle involvement for diagnosis or rehabilitation monitoring. On the one hand, human diagnosis is not scalable and may be subject to personal bias. On the other hand, automatic action quality assessment (AQA) algorithms cannot guarantee 100% accuracy, making them not suitable for biomedical applications. As a solution, we propose a video-based augmented reality system for human-in-the-loop muscle strength assessment of children with JDM. We first propose an AQA algorithm for muscle strength assessment of JDM using contrastive regression trained by a JDM dataset. Our core insight is to visualize the AQA results as a virtual character facilitated by a 3D animation dataset, so that users can compare the real-world patient and the virtual character to understand and verify the AQA results. To allow effective comparisons, we propose a video-based augmented reality system. Given a feed, we adapt computer vision algorithms for scene understanding, evaluate the optimal way of augmenting the virtual character into the scene, and highlight important parts for effective human verification. The experimental results confirm the effectiveness of our AQA algorithm, and the results of the user study demonstrate that humans can more accurately and quickly assess the muscle strength of children using our system 
650 4 |a Journal Article 
700 1 |a Cai, Ruizhi  |e verfasserin  |4 aut 
700 1 |a Ma, Yue  |e verfasserin  |4 aut 
700 1 |a Tan, Qingqing  |e verfasserin  |4 aut 
700 1 |a Wang, Xinning  |e verfasserin  |4 aut 
700 1 |a Li, Jianguo  |e verfasserin  |4 aut 
700 1 |a Shum, Hubert P H  |e verfasserin  |4 aut 
700 1 |a Li, Frederick W B  |e verfasserin  |4 aut 
700 1 |a Jin, Song  |e verfasserin  |4 aut 
700 1 |a Liang, Xiaohui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 5 vom: 04. Mai, Seite 2456-2466  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:29  |g year:2023  |g number:5  |g day:04  |g month:05  |g pages:2456-2466 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3247092  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 5  |b 04  |c 05  |h 2456-2466