Interpretable & Explainable Machine Learning for Ultrasonic Defect Sizing

Despite its popularity in literature, there are few examples of machine learning (ML) being used for industrial nondestructive evaluation (NDE) applications. A significant barrier is the 'black box' nature of most ML algorithms. This paper aims to improve the interpretability and explainab...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - PP(2023) vom: 24. Feb.
1. Verfasser: Pyle, Richard J (VerfasserIn)
Weitere Verfasser: Hughes, Robert R, Wilcox, Paul D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355322994
003 DE-627
005 20231226064114.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2023.3248968  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355322994 
035 |a (NLM)37027643 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pyle, Richard J  |e verfasserin  |4 aut 
245 1 0 |a Interpretable & Explainable Machine Learning for Ultrasonic Defect Sizing 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Despite its popularity in literature, there are few examples of machine learning (ML) being used for industrial nondestructive evaluation (NDE) applications. A significant barrier is the 'black box' nature of most ML algorithms. This paper aims to improve the interpretability and explainability of ML for ultrasonic NDE by presenting a novel dimensionality reduction method: Gaussian feature approximation (GFA). GFA involves fitting a 2D elliptical Gaussian function an ultrasonic image and storing the seven parameters that describe each Gaussian. These seven parameters can then be used as inputs to data analysis methods such as the defect sizing neural network presented in this paper. GFA is applied to ultrasonic defect sizing for inline pipe inspection as an example application. This approach is compared to sizing with the same neural network, and two other dimensionality reduction methods (the parameters of 6 dB drop boxes and principal component analysis), as well as a convolutional neural network applied to raw ultrasonic images. Of the dimensionality reduction methods tested, GFA features produce the closest sizing accuracy to sizing from the raw images, with only a 23% increase in RMSE, despite a 96.5% reduction in the dimensionality of the input data. Implementing ML with GFA is implicitly more interpretable than doing so with principal component analysis or raw images as inputs, and gives significantly more sizing accuracy than 6 dB drop boxes. Shapley additive explanations (SHAP) are used to calculate how each feature contributes to the prediction of an individual defect's length. Analysis of SHAP values demonstrates that the GFA-based neural network proposed displays many of the same relationships between defect indications and their predicted size as occur in traditional NDE sizing methods 
650 4 |a Journal Article 
700 1 |a Hughes, Robert R  |e verfasserin  |4 aut 
700 1 |a Wilcox, Paul D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g PP(2023) vom: 24. Feb.  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:24  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2023.3248968  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 24  |c 02