Fast and Robust Non-Rigid Registration Using Accelerated Majorization-Minimization

Non-rigid 3D registration, which deforms a source 3D shape in a non-rigid way to align with a target 3D shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 23. Aug., Seite 9681-9698
1. Verfasser: Yao, Yuxin (VerfasserIn)
Weitere Verfasser: Deng, Bailin, Xu, Weiwei, Zhang, Juyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355322668
003 DE-627
005 20231226064114.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3247603  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355322668 
035 |a (NLM)37027610 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yao, Yuxin  |e verfasserin  |4 aut 
245 1 0 |a Fast and Robust Non-Rigid Registration Using Accelerated Majorization-Minimization 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2023 
500 |a Date Revised 03.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Non-rigid 3D registration, which deforms a source 3D shape in a non-rigid way to align with a target 3D shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typically adopt the lp type robust norm to measure the alignment error and regularize the smoothness of deformation, and use a proximal algorithm to solve the resulting non-smooth optimization problem. However, the slow convergence of such algorithms limits their wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization, which can effectively handle outliers and partial overlaps. The problem is solved using the majorization-minimization algorithm, which reduces each iteration to a convex quadratic problem with a closed-form solution. We further apply Anderson acceleration to speed up the convergence of the solver, enabling the solver to run efficiently on devices with limited compute capability. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlaps, with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at https://github.com/yaoyx689/AMM_NRR 
650 4 |a Journal Article 
700 1 |a Deng, Bailin  |e verfasserin  |4 aut 
700 1 |a Xu, Weiwei  |e verfasserin  |4 aut 
700 1 |a Zhang, Juyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 8 vom: 23. Aug., Seite 9681-9698  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:8  |g day:23  |g month:08  |g pages:9681-9698 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3247603  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 8  |b 23  |c 08  |h 9681-9698