Consistent 3D Hand Reconstruction in Video via Self-Supervised Learning

We present a method for reconstructing accurate and consistent 3D hands from a monocular video. We observe that the detected 2D hand keypoints and the image texture provide important cues about the geometry and texture of the 3D hand, which can reduce or even eliminate the requirement on 3D hand ann...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 23. Aug., Seite 9469-9485
1. Verfasser: Tu, Zhigang (VerfasserIn)
Weitere Verfasser: Huang, Zhisheng, Chen, Yujin, Kang, Di, Bao, Linchao, Yang, Bisheng, Yuan, Junsong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355322633
003 DE-627
005 20231226064114.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3247907  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355322633 
035 |a (NLM)37027607 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tu, Zhigang  |e verfasserin  |4 aut 
245 1 0 |a Consistent 3D Hand Reconstruction in Video via Self-Supervised Learning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2023 
500 |a Date Revised 03.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a method for reconstructing accurate and consistent 3D hands from a monocular video. We observe that the detected 2D hand keypoints and the image texture provide important cues about the geometry and texture of the 3D hand, which can reduce or even eliminate the requirement on 3D hand annotation. Accordingly, in this work, we propose S2HAND, a self-supervised 3D hand reconstruction model, that can jointly estimate pose, shape, texture, and the camera viewpoint from a single RGB input through the supervision of easily accessible 2D detected keypoints. We leverage the continuous hand motion information contained in the unlabeled video data and explore S2HAND(V), which uses a set of weights shared S2HAND to process each frame and exploits additional motion, texture, and shape consistency constrains to obtain more accurate hand poses, and more consistent shapes and textures. Experiments on benchmark datasets demonstrate that our self-supervised method produces comparable hand reconstruction performance compared with the recent full-supervised methods in single-frame as input setup, and notably improves the reconstruction accuracy and consistency when using the video training data 
650 4 |a Journal Article 
700 1 |a Huang, Zhisheng  |e verfasserin  |4 aut 
700 1 |a Chen, Yujin  |e verfasserin  |4 aut 
700 1 |a Kang, Di  |e verfasserin  |4 aut 
700 1 |a Bao, Linchao  |e verfasserin  |4 aut 
700 1 |a Yang, Bisheng  |e verfasserin  |4 aut 
700 1 |a Yuan, Junsong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 8 vom: 23. Aug., Seite 9469-9485  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:8  |g day:23  |g month:08  |g pages:9469-9485 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3247907  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 8  |b 23  |c 08  |h 9469-9485