Personalized Latent Structure Learning for Recommendation

In recommender systems, users' behavior data are driven by the interactions of user-item latent factors. To improve recommendation effectiveness and robustness, recent advances focus on latent factor disentanglement via variational inference. Despite significant progress, uncovering the underly...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 24. Aug., Seite 10285-10299
Auteur principal: Zhang, Shengyu (Auteur)
Autres auteurs: Feng, Fuli, Kuang, Kun, Zhang, Wenqiao, Zhao, Zhou, Yang, Hongxia, Chua, Tat-Seng, Wu, Fei
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article