Personalized Latent Structure Learning for Recommendation
In recommender systems, users' behavior data are driven by the interactions of user-item latent factors. To improve recommendation effectiveness and robustness, recent advances focus on latent factor disentanglement via variational inference. Despite significant progress, uncovering the underly...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 24. Aug., Seite 10285-10299
|
Auteur principal: |
Zhang, Shengyu
(Auteur) |
Autres auteurs: |
Feng, Fuli,
Kuang, Kun,
Zhang, Wenqiao,
Zhao, Zhou,
Yang, Hongxia,
Chua, Tat-Seng,
Wu, Fei |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2023
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
Sujets: | Journal Article |