Towards Robust Visual Object Tracking with Independent Target-Agnostic Detection and Effective Siamese Cross-Task Interaction

Advanced Siamese visual object tracking architectures are jointly trained using pair-wise input images to perform target classification and bounding box regression. They have achieved promising results in recent benchmarks and competitions. However, the existing methods suffer from two limitations:...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 24. Feb.
1. Verfasser: Xu, Tianyang (VerfasserIn)
Weitere Verfasser: Feng, Zhenhua, Wu, Xiao-Jun, Kittler, Josef
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355322544
003 DE-627
005 20231226064114.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3246800  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355322544 
035 |a (NLM)37027596 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Tianyang  |e verfasserin  |4 aut 
245 1 0 |a Towards Robust Visual Object Tracking with Independent Target-Agnostic Detection and Effective Siamese Cross-Task Interaction 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Advanced Siamese visual object tracking architectures are jointly trained using pair-wise input images to perform target classification and bounding box regression. They have achieved promising results in recent benchmarks and competitions. However, the existing methods suffer from two limitations: First, though the Siamese structure can estimate the target state in an instance frame, provided the target appearance does not deviate too much from the template, the detection of the target in an image cannot be guaranteed in the presence of severe appearance variations. Second, despite the classification and regression tasks sharing the same output from the backbone network, their specific modules and loss functions are invariably designed independently, without promoting any interaction. Yet, in a general tracking task, the centre classification and bounding box regression tasks are collaboratively working to estimate the final target location. To address the above issues, it is essential to perform target-agnostic detection so as to promote cross-task interactions in a Siamese-based tracking framework. In this work, we endow a novel network with a target-agnostic object detection module to complement the direct target inference, and to avoid or minimise the misalignment of the key cues of potential template-instance matches. To unify the multi-task learning formulation, we develop a cross-task interaction module to ensure consistent supervision of the classification and regression branches, improving the synergy of different branches. To eliminate potential inconsistencies that may arise within a multi-task architecture, we assign adaptive labels, rather than fixed hard labels, to supervise the network training more effectively. The experimental results obtained on several benchmarks, i.e., OTB100, UAV123, VOT2018, VOT2019, and LaSOT, demonstrate the effectiveness of the advanced target detection module, as well as the cross-task interaction, exhibiting superior tracking performance as compared with the state-of-the-art tracking methods 
650 4 |a Journal Article 
700 1 |a Feng, Zhenhua  |e verfasserin  |4 aut 
700 1 |a Wu, Xiao-Jun  |e verfasserin  |4 aut 
700 1 |a Kittler, Josef  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 24. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:24  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3246800  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 24  |c 02