Managing Interfacial Defects and Carriers by Synergistic Modulation of Functional Groups and Spatial Conformation for High-Performance Perovskite Photovoltaics Based on Vacuum Flash Method

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 23 vom: 18. Juni, Seite e2301028
1. Verfasser: Gao, Deyu (VerfasserIn)
Weitere Verfasser: Li, Ru, Chen, Xihan, Chen, Cong, Wang, Chenglin, Zhang, Boxue, Li, Mengjia, Shang, Xueni, Yu, Xuemeng, Gong, Shaokuan, Pauporté, Thierry, Yang, Hua, Ding, Liming, Tang, JianXin, Chen, Jiangzhao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article functional groups interfacial engineering perovskite solar cells spatial conformation synergistic modulation
LEADER 01000naa a22002652 4500
001 NLM355316587
003 DE-627
005 20231226064106.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202301028  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355316587 
035 |a (NLM)37026996 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Deyu  |e verfasserin  |4 aut 
245 1 0 |a Managing Interfacial Defects and Carriers by Synergistic Modulation of Functional Groups and Spatial Conformation for High-Performance Perovskite Photovoltaics Based on Vacuum Flash Method 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.06.2023 
500 |a Date Revised 08.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Interfacial nonradiative recombination loss is a huge barrier to advance the photovoltaic performance. Here, one effective interfacial defect and carrier dynamics management strategy by synergistic modulation of functional groups and spatial conformation of ammonium salt molecules is proposed. The surface treatment with 3-ammonium propionic acid iodide (3-APAI) does not form 2D perovskite passivation layer while the propylammonium ions and 5-aminopentanoic acid hydroiodide post-treatment lead to the formation of 2D perovskite passivation layers. Due to appropriate alkyl chain length, theoretical and experimental results manifest that COOH and NH3 + groups in 3-APAI molecules can form coordination bonding with undercoordinated Pb2+ and ionic bonding and hydrogen bonding with octahedron PbI6 4- , respectively, which makes both groups be simultaneously firmly anchored on the surface of perovskite films. This will strengthen defect passivation effect and improve interfacial carrier transport and transfer. The synergistic effect of functional groups and spatial conformation confers 3-APAI better defect passivation effect than 2D perovskite layers. The 3-APAI-modified device based on vacuum flash technology achieves an alluring peak efficiency of 24.72% (certified 23.68%), which is among highly efficient devices fabricated without antisolvents. Furthermore, the encapsulated 3-APAI-modified device degrades by less than 4% after 1400 h of continuous one sun illumination 
650 4 |a Journal Article 
650 4 |a functional groups 
650 4 |a interfacial engineering 
650 4 |a perovskite solar cells 
650 4 |a spatial conformation 
650 4 |a synergistic modulation 
700 1 |a Li, Ru  |e verfasserin  |4 aut 
700 1 |a Chen, Xihan  |e verfasserin  |4 aut 
700 1 |a Chen, Cong  |e verfasserin  |4 aut 
700 1 |a Wang, Chenglin  |e verfasserin  |4 aut 
700 1 |a Zhang, Boxue  |e verfasserin  |4 aut 
700 1 |a Li, Mengjia  |e verfasserin  |4 aut 
700 1 |a Shang, Xueni  |e verfasserin  |4 aut 
700 1 |a Yu, Xuemeng  |e verfasserin  |4 aut 
700 1 |a Gong, Shaokuan  |e verfasserin  |4 aut 
700 1 |a Pauporté, Thierry  |e verfasserin  |4 aut 
700 1 |a Yang, Hua  |e verfasserin  |4 aut 
700 1 |a Ding, Liming  |e verfasserin  |4 aut 
700 1 |a Tang, JianXin  |e verfasserin  |4 aut 
700 1 |a Chen, Jiangzhao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 23 vom: 18. Juni, Seite e2301028  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:23  |g day:18  |g month:06  |g pages:e2301028 
856 4 0 |u http://dx.doi.org/10.1002/adma.202301028  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 23  |b 18  |c 06  |h e2301028