On summary ROC curve for dichotomous diagnostic studies : an application to meta-analysis of COVID-19

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 6 vom: 30., Seite 1418-1434
1. Verfasser: Tzeng, ShengLi (VerfasserIn)
Weitere Verfasser: Chen, Chun-Shu, Li, Yu-Fen, Chen, Jin-Hua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Summary ROC curve meta analysis random effects sensitivity specificity systematic review
LEADER 01000naa a22002652 4500
001 NLM355299496
003 DE-627
005 20231226064045.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2041565  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355299496 
035 |a (NLM)37025283 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tzeng, ShengLi  |e verfasserin  |4 aut 
245 1 0 |a On summary ROC curve for dichotomous diagnostic studies  |b an application to meta-analysis of COVID-19 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.04.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In a systematic review of a diagnostic performance, summarizing performance metrics is crucial. There are various summary models in the literature, and hence model selection becomes inevitable. However, most existing large-sample-based model selection approaches may not fit in a meta-analysis of diagnostic studies, typically having a rather small sample size. Researchers need to effectively determine the final model for further inference, which motivates this article to investigate existing methods and to suggest a more robust method for this need. We considered models covering several widely-used methods for bivariate summary of sensitivity and specificity. Simulation studies were conducted based on different number of studies and different population sensitivity and specificity. Then final models were selected using several existing criteria, and we compared the summary receiver operating characteristic (sROC) curves to the theoretical ROC curve given the generating model. Even though parametric likelihood-based criteria are often applied in practice for their asymptotic property, they fail to consistently choose appropriate models under the limited number of studies. When the number of studies is as small as 10 or 5, our suggestion is best in different scenarios. An example for summary ROC curves for chemiluminescence immunoassay (CLIA) used in COVID-19 diagnosis is also illustrated 
650 4 |a Journal Article 
650 4 |a Summary ROC curve 
650 4 |a meta analysis 
650 4 |a random effects 
650 4 |a sensitivity 
650 4 |a specificity 
650 4 |a systematic review 
700 1 |a Chen, Chun-Shu  |e verfasserin  |4 aut 
700 1 |a Li, Yu-Fen  |e verfasserin  |4 aut 
700 1 |a Chen, Jin-Hua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 6 vom: 30., Seite 1418-1434  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:50  |g year:2023  |g number:6  |g day:30  |g pages:1418-1434 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2041565  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 6  |b 30  |h 1418-1434