|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM35527843X |
003 |
DE-627 |
005 |
20231226064019.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2023.3265198
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1184.xml
|
035 |
|
|
|a (DE-627)NLM35527843X
|
035 |
|
|
|a (NLM)37023149
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Bohong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Prioritized Subnet Sampling for Resource-Adaptive Supernet Training
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.08.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a A resource-adaptive supernet adjusts its subnets for inference to fit the dynamically available resources. In this paper, we propose prioritized subnet sampling to train a resource-adaptive supernet, termed PSS-Net. We maintain multiple subnet pools, each of which stores the information of substantial subnets with similar resource consumption. Considering a resource constraint, subnets conditioned on this resource constraint are sampled from a pre-defined subnet structure space and high-quality ones will be inserted into the corresponding subnet pool. Then, the sampling will gradually be prone to sampling subnets from the subnet pools. Moreover, the one with a better performance metric is assigned with higher priority to train our PSS-Net, if sampling is from a subnet pool. At the end of training, our PSS-Net retains the best subnet in each pool to entitle a fast switch of high-quality subnets for inference when the available resources vary. Experiments on ImageNet using MobileNet-V1/V2 and ResNet-50 show that our PSS-Net can well outperform state-of-the-art resource-adaptive supernets. Our project is publicly available at https://github.com/chenbong/PSS-Net
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Lin, Mingbao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ji, Rongrong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Liujuan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 45(2023), 9 vom: 17. Sept., Seite 11108-11119
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:45
|g year:2023
|g number:9
|g day:17
|g month:09
|g pages:11108-11119
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2023.3265198
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 45
|j 2023
|e 9
|b 17
|c 09
|h 11108-11119
|