Learned Image Compression With Gaussian-Laplacian-Logistic Mixture Model and Concatenated Residual Modules

Recently deep learning-based image compression methods have achieved significant achievements and gradually outperformed traditional approaches including the latest standard Versatile Video Coding (VVC) in both PSNR and MS-SSIM metrics. Two key components of learned image compression are the entropy...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 17., Seite 2063-2076
1. Verfasser: Fu, Haisheng (VerfasserIn)
Weitere Verfasser: Liang, Feng, Lin, Jianping, Li, Bing, Akbari, Mohammad, Liang, Jie, Zhang, Guohe, Liu, Dong, Tu, Chengjie, Han, Jingning
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355278375
003 DE-627
005 20231226064019.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3263099  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355278375 
035 |a (NLM)37023144 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fu, Haisheng  |e verfasserin  |4 aut 
245 1 0 |a Learned Image Compression With Gaussian-Laplacian-Logistic Mixture Model and Concatenated Residual Modules 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently deep learning-based image compression methods have achieved significant achievements and gradually outperformed traditional approaches including the latest standard Versatile Video Coding (VVC) in both PSNR and MS-SSIM metrics. Two key components of learned image compression are the entropy model of the latent representations and the encoding/decoding network architectures. Various models have been proposed, such as autoregressive, softmax, logistic mixture, Gaussian mixture, and Laplacian. Existing schemes only use one of these models. However, due to the vast diversity of images, it is not optimal to use one model for all images, even different regions within one image. In this paper, we propose a more flexible discretized Gaussian-Laplacian-Logistic mixture model (GLLMM) for the latent representations, which can adapt to different contents in different images and different regions of one image more accurately and efficiently, given the same complexity. Besides, in the encoding/decoding network design part, we propose a concatenated residual blocks (CRB), where multiple residual blocks are serially connected with additional shortcut connections. The CRB can improve the learning ability of the network, which can further improve the compression performance. Experimental results using the Kodak, Tecnick-100 and Tecnick-40 datasets show that the proposed scheme outperforms all the leading learning-based methods and existing compression standards including VVC intra coding (4:4:4 and 4:2:0) in terms of the PSNR and MS-SSIM. The source code is available at https://github.com/fengyurenpingsheng 
650 4 |a Journal Article 
700 1 |a Liang, Feng  |e verfasserin  |4 aut 
700 1 |a Lin, Jianping  |e verfasserin  |4 aut 
700 1 |a Li, Bing  |e verfasserin  |4 aut 
700 1 |a Akbari, Mohammad  |e verfasserin  |4 aut 
700 1 |a Liang, Jie  |e verfasserin  |4 aut 
700 1 |a Zhang, Guohe  |e verfasserin  |4 aut 
700 1 |a Liu, Dong  |e verfasserin  |4 aut 
700 1 |a Tu, Chengjie  |e verfasserin  |4 aut 
700 1 |a Han, Jingning  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 17., Seite 2063-2076  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:17  |g pages:2063-2076 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3263099  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 17  |h 2063-2076