The dynamics of H2A.Z on SMALL AUXIN UP RNAs regulate abscisic acid-auxin signaling crosstalk in Arabidopsis
© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 74(2023), 14 vom: 03. Aug., Seite 4158-4168 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Arabidopsis thaliana SMALL AUXIN UP RNAs Abscisic acid auxin histone variant H2A.Z stress responses Abscisic Acid 72S9A8J5GW mehr... |
Zusammenfassung: | © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. Extreme environmental changes threaten plant survival and worldwide food production. In response to osmotic stress, the plant hormone abscisic acid (ABA) activates stress responses and restricts plant growth. However, the epigenetic regulation of ABA signaling and crosstalk between ABA and auxin are not well known. Here, we report that the histone variant H2A.Z-knockdown mutant in Arabidopsis Col-0, h2a.z-kd, has altered ABA signaling and stress responses. RNA-sequencing data showed that a majority of stress-related genes are activated in h2a.z-kd. In addition, we found that ABA directly promotes the deposition of H2A.Z on SMALL AUXIN UP RNAs (SAURs), and that this is involved in ABA-repression of SAUR expression. Moreover, we found that ABA represses the transcription of H2A.Z genes through suppressing the ARF7/19-HB22/25 module. Our results shed light on a dynamic and reciprocal regulation hub through H2A.Z deposition on SAURs and ARF7/19-HB22/25-mediated H2A.Z transcription to integrate ABA/auxin signaling and regulate stress responses in Arabidopsis |
---|---|
Beschreibung: | Date Completed 07.08.2023 Date Revised 07.08.2023 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erad131 |