CLSA : A Contrastive Learning Framework with Selective Aggregation for Video Rescaling

Video rescaling has recently drawn extensive attention for its practical applications such as video compression. Compared to video super-resolution, which focuses on upscaling bicubic-downscaled videos, video rescaling methods jointly optimize a downscaler and a upscaler. However, the inevitable los...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 10. Feb.
1. Verfasser: Tian, Yuan (VerfasserIn)
Weitere Verfasser: Yan, Yichao, Zhai, Guangtao, Chen, Li, Gao, Zhiyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355276003
003 DE-627
005 20231226064016.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3242774  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355276003 
035 |a (NLM)37022906 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tian, Yuan  |e verfasserin  |4 aut 
245 1 0 |a CLSA  |b A Contrastive Learning Framework with Selective Aggregation for Video Rescaling 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Video rescaling has recently drawn extensive attention for its practical applications such as video compression. Compared to video super-resolution, which focuses on upscaling bicubic-downscaled videos, video rescaling methods jointly optimize a downscaler and a upscaler. However, the inevitable loss of information during downscaling makes the upscaling procedure still ill-posed. Furthermore, the network architecture of previous methods mostly relies on convolution to aggregate information within local regions, which cannot effectively capture the relationship between distant locations. To address the above two issues, we propose a unified video rescaling framework by introducing the following designs. First, we propose to regularize the information of the downscaled videos via a contrastive learning framework, where, particularly, hard negative samples for learning are synthesized online. With this auxiliary contrastive learning objective, the downscaler tends to retain more information that benefits the upscaler. Second, we present a selective global aggregation module (SGAM) to efficiently capture long-range redundancy in high-resolution videos, where only a few representative locations are adaptively selected to participate in the computationally-heavy self-attention (SA) operations. SGAM enjoys the efficiency of the sparse modeling scheme while preserving the global modeling capability of SA. We refer to the proposed framework as Contrastive Learning framework with Selective Aggregation (CLSA) for video rescaling. Comprehensive experimental results show that CLSA outperforms video rescaling and rescaling-based video compression methods on five datasets, achieving state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a Yan, Yichao  |e verfasserin  |4 aut 
700 1 |a Zhai, Guangtao  |e verfasserin  |4 aut 
700 1 |a Chen, Li  |e verfasserin  |4 aut 
700 1 |a Gao, Zhiyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 10. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:10  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3242774  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 10  |c 02