TUSR-Net : Triple Unfolding Single Image Dehazing with Self-Regularization and Dual Feature to Pixel Attention

Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 13. Feb.
1. Verfasser: Song, Xibin (VerfasserIn)
Weitere Verfasser: Zhou, Dingfu, Li, Wei, Dai, Yuchao, Shen, Zhelun, Zhang, Liangjun, Li, Hongdong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355275988
003 DE-627
005 20231226064016.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3234701  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355275988 
035 |a (NLM)37022903 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Xibin  |e verfasserin  |4 aut 
245 1 0 |a TUSR-Net  |b Triple Unfolding Single Image Dehazing with Self-Regularization and Dual Feature to Pixel Attention 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into clear and haze components. However, the nature of low similarity between haze and clear components is commonly neglected, while the lack of constraint of contrastive peculiarity between the two components always restricts the performance of these approaches. To deal with these problems, we propose an end-to-end self-regularized network (TUSR-Net) which exploits the contrastive peculiarity of different components of the hazy image, i.e, self-regularization (SR). In specific, the hazy image is separated into clear and hazy components and constraint between different image components, i.e., self-regularization, is leveraged to pull the recovered clear image closer to groundtruth, which largely promotes the performance of image dehazing. Meanwhile, an effective triple unfolding framework combined with dual feature to pixel attention is proposed to intensify and fuse the intermediate information in feature, channel and pixel levels, respectively, thus features with better representational ability can be obtained. Our TUSR-Net achieves better trade-off between performance and parameter size with weight-sharing strategy and is much more flexible. Experiments on various benchmarking datasets demonstrate the superiority of our TUSR-Net over state-of-the-art single image dehazing methods 
650 4 |a Journal Article 
700 1 |a Zhou, Dingfu  |e verfasserin  |4 aut 
700 1 |a Li, Wei  |e verfasserin  |4 aut 
700 1 |a Dai, Yuchao  |e verfasserin  |4 aut 
700 1 |a Shen, Zhelun  |e verfasserin  |4 aut 
700 1 |a Zhang, Liangjun  |e verfasserin  |4 aut 
700 1 |a Li, Hongdong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 13. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:13  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3234701  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 13  |c 02