Multi-Exposure Image Fusion via Deformable Self-Attention

Most multi-exposure image fusion (MEF) methods perform unidirectional alignment within limited and local regions, which ignore the effects of augmented locations and preserve deficient global features. In this work, we propose a multi-scale bidirectional alignment network via deformable self-attenti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 10. Feb.
1. Verfasser: Luo, Jun (VerfasserIn)
Weitere Verfasser: Ren, Wenqi, Gao, Xinwei, Cao, Xiaochun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355275945
003 DE-627
005 20231226064016.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3242824  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355275945 
035 |a (NLM)37022900 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luo, Jun  |e verfasserin  |4 aut 
245 1 0 |a Multi-Exposure Image Fusion via Deformable Self-Attention 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Most multi-exposure image fusion (MEF) methods perform unidirectional alignment within limited and local regions, which ignore the effects of augmented locations and preserve deficient global features. In this work, we propose a multi-scale bidirectional alignment network via deformable self-attention to perform adaptive image fusion. The proposed network exploits differently exposed images and aligns them to the normal exposure in varying degrees. Specifically, we design a novel deformable self-attention module that considers variant long-distance attention and interaction and implements the bidirectional alignment for image fusion. To realize adaptive feature alignment, we employ a learnable weighted summation of different inputs and predict the offsets in the deformable self-attention module, which facilitates that the model generalizes well in various scenes. In addition, the multi-scale feature extraction strategy makes the features across different scales complementary and provides fine details and contextual features. Extensive experiments demonstrate that our proposed algorithm performs favorably against state-of-the-art MEF methods 
650 4 |a Journal Article 
700 1 |a Ren, Wenqi  |e verfasserin  |4 aut 
700 1 |a Gao, Xinwei  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 10. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:10  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3242824  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 10  |c 02