|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM355275945 |
003 |
DE-627 |
005 |
20231226064016.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2023.3242824
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1184.xml
|
035 |
|
|
|a (DE-627)NLM355275945
|
035 |
|
|
|a (NLM)37022900
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Luo, Jun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Multi-Exposure Image Fusion via Deformable Self-Attention
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 06.04.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a Most multi-exposure image fusion (MEF) methods perform unidirectional alignment within limited and local regions, which ignore the effects of augmented locations and preserve deficient global features. In this work, we propose a multi-scale bidirectional alignment network via deformable self-attention to perform adaptive image fusion. The proposed network exploits differently exposed images and aligns them to the normal exposure in varying degrees. Specifically, we design a novel deformable self-attention module that considers variant long-distance attention and interaction and implements the bidirectional alignment for image fusion. To realize adaptive feature alignment, we employ a learnable weighted summation of different inputs and predict the offsets in the deformable self-attention module, which facilitates that the model generalizes well in various scenes. In addition, the multi-scale feature extraction strategy makes the features across different scales complementary and provides fine details and contextual features. Extensive experiments demonstrate that our proposed algorithm performs favorably against state-of-the-art MEF methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Ren, Wenqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Xinwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Xiaochun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g PP(2023) vom: 10. Feb.
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:PP
|g year:2023
|g day:10
|g month:02
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2023.3242824
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d PP
|j 2023
|b 10
|c 02
|