Adaptive Feature Projection With Distribution Alignment for Deep Incomplete Multi-View Clustering

Incomplete multi-view clustering (IMVC) analysis, where some views of multi-view data usually have missing data, has attracted increasing attention. However, existing IMVC methods still have two issues: 1) they pay much attention to imputing or recovering the missing data, without considering the fa...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 04., Seite 1354-1366
Auteur principal: Xu, Jie (Auteur)
Autres auteurs: Li, Chao, Peng, Liang, Ren, Yazhou, Shi, Xiaoshuang, Shen, Heng Tao, Zhu, Xiaofeng
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:Incomplete multi-view clustering (IMVC) analysis, where some views of multi-view data usually have missing data, has attracted increasing attention. However, existing IMVC methods still have two issues: 1) they pay much attention to imputing or recovering the missing data, without considering the fact that the imputed values might be inaccurate due to the unknown label information, 2) the common features of multiple views are always learned from the complete data, while ignoring the feature distribution discrepancy between the complete and incomplete data. To address these issues, we propose an imputation-free deep IMVC method and consider distribution alignment in feature learning. Concretely, the proposed method learns the features for each view by autoencoders and utilizes an adaptive feature projection to avoid the imputation for missing data. All available data are projected into a common feature space, where the common cluster information is explored by maximizing mutual information and the distribution alignment is achieved by minimizing mean discrepancy. Additionally, we design a new mean discrepancy loss for incomplete multi-view learning and make it applicable in mini-batch optimization. Extensive experiments demonstrate that our method achieves the comparable or superior performance compared with state-of-the-art methods
Description:Date Revised 04.04.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2023.3243521