|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM355275392 |
003 |
DE-627 |
005 |
20231226064015.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2023.3243306
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1184.xml
|
035 |
|
|
|a (DE-627)NLM355275392
|
035 |
|
|
|a (NLM)37022845
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Daqi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Neural Belief Propagation for Scene Graph Generation
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 03.07.2023
|
500 |
|
|
|a Date Revised 03.07.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Scene graph generation aims to interpret an input image by explicitly modelling the objects contained therein and their relationships. In existing methods the problem is predominantly solved by message passing neural network models. Unfortunately, in such models, the variational distributions generally ignore the structural dependencies among the output variables, and most of the scoring functions only consider pairwise dependencies. This can lead to inconsistent interpretations. In this article, we propose a novel neural belief propagation method seeking to replace the traditional mean field approximation with a structural Bethe approximation. To find a better bias-variance trade-off, higher-order dependencies among three or more output variables are also incorporated into the relevant scoring function. The proposed method achieves the state-of-the-art performance on various popular scene graph generation benchmarks
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Bober, Miroslaw
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kittler, Josef
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 45(2023), 8 vom: 08. Aug., Seite 10161-10172
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:45
|g year:2023
|g number:8
|g day:08
|g month:08
|g pages:10161-10172
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2023.3243306
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 45
|j 2023
|e 8
|b 08
|c 08
|h 10161-10172
|