Neural Belief Propagation for Scene Graph Generation

Scene graph generation aims to interpret an input image by explicitly modelling the objects contained therein and their relationships. In existing methods the problem is predominantly solved by message passing neural network models. Unfortunately, in such models, the variational distributions genera...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 08. Aug., Seite 10161-10172
1. Verfasser: Liu, Daqi (VerfasserIn)
Weitere Verfasser: Bober, Miroslaw, Kittler, Josef
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355275392
003 DE-627
005 20231226064015.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3243306  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355275392 
035 |a (NLM)37022845 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Daqi  |e verfasserin  |4 aut 
245 1 0 |a Neural Belief Propagation for Scene Graph Generation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2023 
500 |a Date Revised 03.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Scene graph generation aims to interpret an input image by explicitly modelling the objects contained therein and their relationships. In existing methods the problem is predominantly solved by message passing neural network models. Unfortunately, in such models, the variational distributions generally ignore the structural dependencies among the output variables, and most of the scoring functions only consider pairwise dependencies. This can lead to inconsistent interpretations. In this article, we propose a novel neural belief propagation method seeking to replace the traditional mean field approximation with a structural Bethe approximation. To find a better bias-variance trade-off, higher-order dependencies among three or more output variables are also incorporated into the relevant scoring function. The proposed method achieves the state-of-the-art performance on various popular scene graph generation benchmarks 
650 4 |a Journal Article 
700 1 |a Bober, Miroslaw  |e verfasserin  |4 aut 
700 1 |a Kittler, Josef  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 8 vom: 08. Aug., Seite 10161-10172  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:8  |g day:08  |g month:08  |g pages:10161-10172 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3243306  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 8  |b 08  |c 08  |h 10161-10172