SequenceMorph : A Unified Unsupervised Learning Framework for Motion Tracking on Cardiac Image Sequences

Modern medical imaging techniques, such as ultrasound (US) and cardiac magnetic resonance (MR) imaging, have enabled the evaluation of myocardial deformation directly from an image sequence. While many traditional cardiac motion tracking methods have been developed for the automated estimation of th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 03. Aug., Seite 10409-10426
1. Verfasser: Ye, Meng (VerfasserIn)
Weitere Verfasser: Yang, Dong, Huang, Qiaoying, Kanski, Mikael, Axel, Leon, Metaxas, Dimitris N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM355275333
003 DE-627
005 20250104232757.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3243040  |2 doi 
028 5 2 |a pubmed24n1651.xml 
035 |a (DE-627)NLM355275333 
035 |a (NLM)37022840 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ye, Meng  |e verfasserin  |4 aut 
245 1 0 |a SequenceMorph  |b A Unified Unsupervised Learning Framework for Motion Tracking on Cardiac Image Sequences 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2023 
500 |a Date Revised 03.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Modern medical imaging techniques, such as ultrasound (US) and cardiac magnetic resonance (MR) imaging, have enabled the evaluation of myocardial deformation directly from an image sequence. While many traditional cardiac motion tracking methods have been developed for the automated estimation of the myocardial wall deformation, they are not widely used in clinical diagnosis, due to their lack of accuracy and efficiency. In this paper, we propose a novel deep learning-based fully unsupervised method, SequenceMorph, for in vivo motion tracking in cardiac image sequences. In our method, we introduce the concept of motion decomposition and recomposition. We first estimate the inter-frame (INF) motion field between any two consecutive frames, by a bi-directional generative diffeomorphic registration neural network. Using this result, we then estimate the Lagrangian motion field between the reference frame and any other frame, through a differentiable composition layer. Our framework can be extended to incorporate another registration network, to further reduce the accumulated errors introduced in the INF motion tracking step, and to refine the Lagrangian motion estimation. By utilizing temporal information to perform reasonable estimations of spatio-temporal motion fields, this novel method provides a useful solution for image sequence motion tracking. Our method has been applied to US (echocardiographic) and cardiac MR (untagged and tagged cine) image sequences; the results show that SequenceMorph is significantly superior to conventional motion tracking methods, in terms of the cardiac motion tracking accuracy and inference efficiency 
650 4 |a Journal Article 
700 1 |a Yang, Dong  |e verfasserin  |4 aut 
700 1 |a Huang, Qiaoying  |e verfasserin  |4 aut 
700 1 |a Kanski, Mikael  |e verfasserin  |4 aut 
700 1 |a Axel, Leon  |e verfasserin  |4 aut 
700 1 |a Metaxas, Dimitris N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 8 vom: 03. Aug., Seite 10409-10426  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:8  |g day:03  |g month:08  |g pages:10409-10426 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3243040  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 8  |b 03  |c 08  |h 10409-10426