Federated Learning Via Inexact ADMM

One of the crucial issues in federated learning is how to develop efficient optimization algorithms. Most of the current ones require full device participation and/or impose strong assumptions for convergence. Different from the widely-used gradient descent-based algorithms, in this article, we deve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 07. Aug., Seite 9699-9708
1. Verfasser: Zhou, Shenglong (VerfasserIn)
Weitere Verfasser: Li, Geoffrey Ye
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355275317
003 DE-627
005 20231226064015.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3243080  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355275317 
035 |a (NLM)37022837 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Shenglong  |e verfasserin  |4 aut 
245 1 0 |a Federated Learning Via Inexact ADMM 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2023 
500 |a Date Revised 03.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a One of the crucial issues in federated learning is how to develop efficient optimization algorithms. Most of the current ones require full device participation and/or impose strong assumptions for convergence. Different from the widely-used gradient descent-based algorithms, in this article, we develop an inexact alternating direction method of multipliers (ADMM), which is both computation- and communication-efficient, capable of combating the stragglers' effect, and convergent under mild conditions. Furthermore, it has high numerical performance compared with several state-of-the-art algorithms for federated learning 
650 4 |a Journal Article 
700 1 |a Li, Geoffrey Ye  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 8 vom: 07. Aug., Seite 9699-9708  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:8  |g day:07  |g month:08  |g pages:9699-9708 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3243080  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 8  |b 07  |c 08  |h 9699-9708