Joint-Confidence-guided Multi-Task Learning for 3D Reconstruction and Understanding from Monocular Camera

3D reconstruction and understanding from monocular camera is a key issue in computer vision. Recent learning-based approaches, especially multi-task learning, significantly achieve the performance of the related tasks. However a few works still have limitation in drawing loss-spatial-aware informati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 03. Feb.
1. Verfasser: Wang, Yufan (VerfasserIn)
Weitere Verfasser: Zhao, Qunfei, Gan, Yangzhou, Xia, Zeyang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355271265
003 DE-627
005 20231226064010.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3240834  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355271265 
035 |a (NLM)37022432 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Yufan  |e verfasserin  |4 aut 
245 1 0 |a Joint-Confidence-guided Multi-Task Learning for 3D Reconstruction and Understanding from Monocular Camera 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a 3D reconstruction and understanding from monocular camera is a key issue in computer vision. Recent learning-based approaches, especially multi-task learning, significantly achieve the performance of the related tasks. However a few works still have limitation in drawing loss-spatial-aware information. In this paper, we propose a novel Joint-confidence-guided network (JCNet) to simultaneously predict depth, semantic labels, surface normal, and joint confidence map for corresponding loss functions. In details, we design a Joint Confidence Fusion and Refinement (JCFR) module to achieve multi-task feature fusion in the unified independent space, which can also absorb the geometric-semantic structure feature in the joint confidence map. We use confidence-guided uncertainty generated by the joint confidence map to supervise the multi-task prediction across the spatial and channel dimensions. To alleviate the training attention imbalance among different loss functions or spatial regions, the Stochastic Trust Mechanism (STM) is designed to stochastically modify the elements of joint confidence map in the training phase. Finally, we design a calibrating operation to alternately optimize the joint confidence branch and the other parts of JCNet to avoid overfiting. The proposed methods achieve state-of-the-art performance in both geometric-semantic prediction and uncertainty estimation on NYU-Depth V2 and Cityscapes 
650 4 |a Journal Article 
700 1 |a Zhao, Qunfei  |e verfasserin  |4 aut 
700 1 |a Gan, Yangzhou  |e verfasserin  |4 aut 
700 1 |a Xia, Zeyang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 03. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:03  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3240834  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 03  |c 02