Progressive Contextual Aggregation Empowered by Pixel-wise Confidence Scoring for Image Inpainting

Image inpainting methods leverage the similarity of adjacent pixels to create alternative content. However, as the invisible region becomes larger, the pixels completed in the deeper hole are difficult to infer from the surrounding pixel signal, which is more prone to visual artifacts. To help fill...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 06. Feb.
1. Verfasser: Kim, Jinwoo (VerfasserIn)
Weitere Verfasser: Kim, Woojae, Oh, Heeseok, Lee, Sanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355271214
003 DE-627
005 20231226064010.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3238317  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355271214 
035 |a (NLM)37022427 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Jinwoo  |e verfasserin  |4 aut 
245 1 0 |a Progressive Contextual Aggregation Empowered by Pixel-wise Confidence Scoring for Image Inpainting 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Image inpainting methods leverage the similarity of adjacent pixels to create alternative content. However, as the invisible region becomes larger, the pixels completed in the deeper hole are difficult to infer from the surrounding pixel signal, which is more prone to visual artifacts. To help fill this void, we adopt an alternative progressive hole-filling scheme that hierarchically fills the corrupted region in the feature and image spaces. This technique allows us to utilize reliable contextual information of the surrounding pixels, even for large hole samples, and then gradually complete the details as the resolution increases. For a more realistic representation of the completed region, we devise a pixel-wise dense detector. By distinguishing each pixel as whether it is a masked region or not, and passing the gradient to all resolutions, the generator further enhances the potential quality of the compositing. Furthermore, the completed images at different resolutions are then merged using a proposed structure transfer module (STM) that incorporates fine-grained local and coarse-grained global interactions. In this new mechanism, each completed image at the different resolutions attends its closest composition at fine granularity adjacent image and thus can capture the global continuity by interacting both short- and long-range dependencies. By comparing our solutions qualitatively and quantitatively with state-of-the-art methods, we conclude that our model exhibits a significantly improved visual quality, even in the case of large holes 
650 4 |a Journal Article 
700 1 |a Kim, Woojae  |e verfasserin  |4 aut 
700 1 |a Oh, Heeseok  |e verfasserin  |4 aut 
700 1 |a Lee, Sanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 06. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:06  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3238317  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 06  |c 02