Properties of Standard and Sketched Kernel Fisher Discriminant

Kernel Fisher discriminant (KFD) is a popular tool as a nonlinear extension of Fisher's linear discriminant, based on the use of the kernel trick. However, its asymptotic properties are still rarely studied. We first present an operator-theoretical formulation of KFD which elucidates the popula...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 06. Aug., Seite 10596-10602
1. Verfasser: Liu, Jiamin (VerfasserIn)
Weitere Verfasser: Xu, Wangli, Zhang, Fode, Lian, Heng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Kernel Fisher discriminant (KFD) is a popular tool as a nonlinear extension of Fisher's linear discriminant, based on the use of the kernel trick. However, its asymptotic properties are still rarely studied. We first present an operator-theoretical formulation of KFD which elucidates the population target of the estimation problem. Convergence of the KFD solution to its population target is then established. However, the complexity of finding the solution poses significant challenges when n is large and we further propose a sketched estimation approach based on a m×n sketching matrix which possesses the same asymptotic properties (in terms of convergence rate) even when m is much smaller than n. Some numerical results are presented to illustrate the performances of the sketched estimator
Beschreibung:Date Completed 03.07.2023
Date Revised 03.07.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2023.3242681