Real-Time High-Quality Computer-Generated Hologram Using Complex-Valued Convolutional Neural Network

Holographic displays are ideal display technologies for virtual and augmented reality because all visual cues are provided. However, real-time high-quality holographic displays are difficult to achieve because the generation of high-quality computer-generated hologram (CGH) is inefficient in existin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 7 vom: 10. Juni, Seite 3709-3718
1. Verfasser: Zhong, Chongli (VerfasserIn)
Weitere Verfasser: Sang, Xinzhu, Yan, Binbin, Li, Hui, Chen, Duo, Qin, Xiujuan, Chen, Shuo, Ye, Xiaoqian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM355267284
003 DE-627
005 20240628231858.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3239670  |2 doi 
028 5 2 |a pubmed24n1454.xml 
035 |a (DE-627)NLM355267284 
035 |a (NLM)37022034 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhong, Chongli  |e verfasserin  |4 aut 
245 1 0 |a Real-Time High-Quality Computer-Generated Hologram Using Complex-Valued Convolutional Neural Network 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Holographic displays are ideal display technologies for virtual and augmented reality because all visual cues are provided. However, real-time high-quality holographic displays are difficult to achieve because the generation of high-quality computer-generated hologram (CGH) is inefficient in existing algorithms. Here, complex-valued convolutional neural network (CCNN) is proposed for phase-only CGH generation. The CCNN-CGH architecture is effective with a simple network structure based on the character design of complex amplitude. A holographic display prototype is set up for optical reconstruction. Experiments verify that state-of-the-art performance is achieved in terms of quality and generation speed in existing end-to-end neural holography methods using the ideal wave propagation model. The generation speed is three times faster than HoloNet and one-sixth faster than Holo-encoder, and the Peak Signal to Noise Ratio (PSNR) is increased by 3 dB and 9 dB, respectively. Real-time high-quality CGHs are generated in 1920 × 1072 and 3840 × 2160 resolutions for dynamic holographic displays 
650 4 |a Journal Article 
700 1 |a Sang, Xinzhu  |e verfasserin  |4 aut 
700 1 |a Yan, Binbin  |e verfasserin  |4 aut 
700 1 |a Li, Hui  |e verfasserin  |4 aut 
700 1 |a Chen, Duo  |e verfasserin  |4 aut 
700 1 |a Qin, Xiujuan  |e verfasserin  |4 aut 
700 1 |a Chen, Shuo  |e verfasserin  |4 aut 
700 1 |a Ye, Xiaoqian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 7 vom: 10. Juni, Seite 3709-3718  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:7  |g day:10  |g month:06  |g pages:3709-3718 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3239670  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 7  |b 10  |c 06  |h 3709-3718