|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM355267284 |
003 |
DE-627 |
005 |
20240628231858.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2023.3239670
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1454.xml
|
035 |
|
|
|a (DE-627)NLM355267284
|
035 |
|
|
|a (NLM)37022034
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhong, Chongli
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Real-Time High-Quality Computer-Generated Hologram Using Complex-Valued Convolutional Neural Network
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 28.06.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Holographic displays are ideal display technologies for virtual and augmented reality because all visual cues are provided. However, real-time high-quality holographic displays are difficult to achieve because the generation of high-quality computer-generated hologram (CGH) is inefficient in existing algorithms. Here, complex-valued convolutional neural network (CCNN) is proposed for phase-only CGH generation. The CCNN-CGH architecture is effective with a simple network structure based on the character design of complex amplitude. A holographic display prototype is set up for optical reconstruction. Experiments verify that state-of-the-art performance is achieved in terms of quality and generation speed in existing end-to-end neural holography methods using the ideal wave propagation model. The generation speed is three times faster than HoloNet and one-sixth faster than Holo-encoder, and the Peak Signal to Noise Ratio (PSNR) is increased by 3 dB and 9 dB, respectively. Real-time high-quality CGHs are generated in 1920 × 1072 and 3840 × 2160 resolutions for dynamic holographic displays
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Sang, Xinzhu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Binbin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Duo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qin, Xiujuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Shuo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ye, Xiaoqian
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 30(2024), 7 vom: 10. Juni, Seite 3709-3718
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2024
|g number:7
|g day:10
|g month:06
|g pages:3709-3718
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2023.3239670
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2024
|e 7
|b 10
|c 06
|h 3709-3718
|